Skip to main content
Log in

Analysis of population structure and origin in Aegilops tauschii Coss. from China through SNP markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

As the D genome progenitor of common wheat, Aegilops tauschii Cosson is geographically widespread in central Eurasia. In spite of intensive global studies, the origin and population structure of Ae. tauschii from China is still ambiguous. In this work, we detected 4245 single nucleotide polymorphism across 67 Ae. tauschii accessions from whole natural habitat to re-evaluate the population structure and phylogenetic relationship. As a result, Ae. tauschii accessions from Xinjiang were consistently allocated into sublineage 1E, revealing the easternmost of the natural distribution for Ae. tauschii wild population. Unexpectedly, the accessions from Yellow River region were firstly separated from L1 to be an independent cluster, the rest of which then subdivided into sublineages 1W and 1E. In addition, Ae. tauschii in this region exhibited high FST values with those in Central Asia, South Asia, and Xinjiang, respectively, ranging from 0.5863 to 0.8369. These results indicate that Ae. tauschii in Yellow River region might contain individual genetic variations absent in other sublineages, which could provide excellent gene resources for improvement in common wheat. The neighbor-joining tree based on the genetic distances indicated Ae. tauschii in Yellow River region to be closely related with AY57 accession from Turkmenistan, with bootstrap value of 96%. Moreover, a synchronous flowering time was observed in AY57 accession and those in Yellow River region. These results demonstrate that the accessions in Yellow River region, as an adventive population, may be directly radiated from the southern area of Turkmenistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 27:2534–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Google Scholar 

  • Dale Z, Jie H, Luyu H, Cancan Z, Yun Z, Yarui S et al (2017) An advanced backcross population through synthetic octaploid wheat as a “bridge”: development and QTL detection for seed dormancy. Front Plant Sci 8:2123

    PubMed  PubMed Central  Google Scholar 

  • Dudnikov AJ (2014) Aegilops tauschii Coss.: allelic variation of enzyme-encoding genes and ecological differentiation of the species. Genet Resour Crop Evol 61:1329–1344

    CAS  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Google Scholar 

  • Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    CAS  Google Scholar 

  • Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H (2012) The origin of spelt and free-threshing hexaploid wheat. J Hered 103:426–441

    CAS  PubMed  Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Repert Spec Nov Regni Veg Beih 55:1–228

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N et al (2016) Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Curr Genet 62:791–798

    CAS  PubMed  Google Scholar 

  • Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS (2014) The chloroplast view of the evolution of polyploid wheat. New Phytol 204:704–714

    CAS  PubMed  Google Scholar 

  • Guo S, Dai S, Singh PK, Wang H, Wang Y, Tan JLH et al (2018) A membrane-bound NAC-Like transcription factor OsNTL5 represses the flowering in Oryza sativa. Front Plant Sci 9:555

    PubMed  PubMed Central  Google Scholar 

  • Hammer K (1980) Zur Taxonomie und Nomenklature der Gattung Aegilops L. Feddes Rep 91:225–258

    Google Scholar 

  • Han YJ, Chen WC, Yang FB, Wang XH, Dong MF, Zhou P et al (2015) cDNA-AFLP analysis on 2 Osmanthus fragrans cultivars with different flower color and molecular characteristics of MYB1 gene. Trees Struct Funct 29(3):931–940

    CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    CAS  PubMed  Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Google Scholar 

  • Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14 (in Japanese)

    Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F et al (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources cereals. Springer, Berlin, pp 1–76

    Google Scholar 

  • Lagudah ES, Appels R, Brown AHD, McNeil D (1991) The molecular-genetic analysis of Triticum tauschii, the D genome donor to hexaploid wheat. Genome 34:375–386

    CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in Central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS ONE 3:e3138

    PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Nishioka E, Kawahara T, Takumi S (2009) Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol 279:233–244

    Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2015) Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evol Biol 15:213

    PubMed  PubMed Central  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27

    Google Scholar 

  • Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 19:999–1013

    PubMed  Google Scholar 

  • Naghavi MR, Mardi M (2010) Characterization of genetic variation among accessions of Aegilops tauschii. Asia-Pac J Mol Biol Biotechnol 18:93–96

    Google Scholar 

  • Okuno K, Ebana K, Noov B, Yoshida H (1998) Genetic diversity of Central Asian and North Caucasian Aegilops as revealed by RAPD markers. Genet Resour Crop Evol 45:389–394

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Google Scholar 

  • Saisho D, Takumi S, Matsuoka Y (2016) Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion. Sci Rep UK 6:38554

    CAS  Google Scholar 

  • Singh S, Chahal GS, Singh PK, Gill BS (2012) Discovery of desirable genes in the germplasm pool of Aegilops tauschii Coss. Indian J Genet Plant Breed 72:271–277

    Google Scholar 

  • Sohail Q, Shehzad T, Kilian A, Eltayeb AE, Tanaka H, Tsujimoto H (2012) Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed Sci 62:38–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Du XM, Cai CW, Long L, Zhang S, Qiao P et al (2016) To be a flower or fruiting branch: insights revealed by mRNA and small RNA transcriptomes from different cotton developmental stages. Sci Rep UK 6:23212

    CAS  Google Scholar 

  • Takumi S, Nishioka E, Morihiro H, Kawaharam T, Matsuoka Y (2009) Natural variation of morphological traits in the wild wheat progenitor Aegilops tauschii Coss. Breed Sci 59:579–588

    Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, pp 1–513

    Google Scholar 

  • Wang Q, Huang L, Yuan ZW, Hu XG, Liu DC (2010) Transmission relationship between Aegilops tauschii Cosson in Xinjiang and Yellow River Basin in China. J Sichuan Agric Univ 28:407–410

    Google Scholar 

  • Wang JR, Luo MC, Chen ZX, You FM, Wei YM, Zheng YL et al (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    CAS  PubMed  Google Scholar 

  • Wei HT, Li J, Peng ZS, Lu BR, Zhao ZJ, Yang WY (2008) Relationships of Aegilops tauschii revealed by DNA fingerprints: the evidence for agriculture exchange between China and the West. Prog Nat Sci 18:1525–1531

    CAS  Google Scholar 

  • Yang WY (1992) A cytogenetics study on Aegilops tauschii cosson from China. J Southwest Univ Sci Technol 1:14–19

    Google Scholar 

  • Yen C, Yang JL, Liu XD, Li LR (1983) The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In: Sankamoto S (ed) Proceedings of the 6th international wheat genetics symposium, Kyoto, Japan, pp 55–58

  • Yen C, Yang JL, Cui NR, Zhong JP, Dong YS, Sun YZ et al (1984) The Aegilops tauschii cosson from Yi-li, Xinjiang, China. Acta. Agron Sin 10:1–8

    Google Scholar 

  • Zhang XY, Yang XM, Dong YC (1995) Genetic analysis of wheat germplasm by acid polyacrylamide gel electrophoresis of gliadins. Sci Agric Sin 28:25–32

    CAS  Google Scholar 

  • Zhang D, Zhou Y, Zhao X, Lv L, Zhang C, Li J et al (2018a) Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × hexaploid wheat) as donor. Front Plant Sci 9:1113

    PubMed  PubMed Central  Google Scholar 

  • Zhang XF, Chen JH, Yan Y, Yan XF, Shi CN, Zhao L et al (2018b) Genome-wide association study of heading and flowering dates and construction of its prediction equation in Chinese common wheat. Theor Appl Genet 131:2271–2285

    CAS  PubMed  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko E, Voothuluru P, Gill BS (2005) Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor Appl Genet 111:831–837

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 31601297 and 31871615) and Key Scientific Research Projects of Higher Education Institutions in Henan Province (Grant No. 20A210007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dale Zhang or Suoping Li.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zou, M., Zhu, Y. et al. Analysis of population structure and origin in Aegilops tauschii Coss. from China through SNP markers. Genet Resour Crop Evol 67, 923–934 (2020). https://doi.org/10.1007/s10722-020-00890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00890-y

Keywords

Navigation