Skip to main content

Advertisement

Log in

Landscape Metrics Integrated in Hydraulic Modeling for River Restoration Planning

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

A Correction to this article was published on 17 March 2020

This article has been updated

Abstract

Engineers have shaped the environment across the centuries in order to improve the quality and safety of human life. The unrestrained invasion of nature led to significant environmental problems, for this reason nowadays engineering projects should be based on ecological concepts to protect our environment. This paper presents an integrated methodology that involves GIS tools, hydraulic numerical models, and landscape metrics to investigate ecological consequences caused by river restoration activities. The combined use of these different tools represents a bridge to connect the field of engineering with ecological techniques. The proposed method was tested to predict and assess the influence of a river restoration plan on a reach of the Orco river located in the northwest of Italy. Morphological alterations were simulated to reconnect remnant meanders and provide water to the floodplain, enhancing the ecological value of riparian ecosystems. The application of the hydraulic model permitted to evaluate the distribution of water inside the study area before and after the restoration plan. Thereafter, spatial configuration and temporal dynamics of the landscape structures were quantified using landscape metrics. The increase of patch density (PD) by 9% and edge density (ED) up to 10% highlights that restoration activities lead to a new configuration characterized by a higher level of fragmentation and heterogeneity. The characteristics of versatility, repeatability, and the possibility to predict the outcomes of a specific plan make the proposed method a useful tool that could help decision-makers to manage the territory while safeguarding natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 17 March 2020

    The original version of this paper was unfortunately published with an error. The online visualization of the paper is correct; instead, the printed version (page 5) reports strange lines into the vectors of Eq. (2), and the G is divided from its expression (see Fig.��1).

References

  1. Paudel, S., & Yuan, F. (2012). Assessing landscape changes and dynamics using patch analysis and GIS modeling. International Journal of Applied Earth Observation and Geoinformation, 16, 66–76.

    Article  Google Scholar 

  2. Lancaster, J., & Downes, B. (2010). Linking the hydraulic world of individual organisms to ecological processes: putting ecology into ecohydraulics. River Research and Applications, 403, 385–403.

    Article  Google Scholar 

  3. Vanzo, D., Zolezzi, G., & Siviglia, A. (2016). Eco-hydraulic modelling of the interactions between hydropeaking and river morphology. Ecohydrology, 9, 421–437.

    Article  Google Scholar 

  4. Entwistle, N., Heritage, G., & Milan, D. (2019). Ecohydraulic modelling of anabranching rivers. River Research and Applications, 353–364.

  5. Dunbar M. J., & Acreman, M. C. (2001). Applied hydro-ecological science for the twenty-first century, 266, 1–17.

  6. Mitsch, W., & Jørgensen, S. E. (2004). Ecological Engineering and Ecosystem Restoration; ISBN 0-471-33264-X.

  7. McGarigal, K., & Marks, B. (1995). FRAGSTAT: spatial pattern analysis program for quantifying landscape structure. U. S. Dep. Agric. Pac. Northwest Res. Stn.

  8. Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 171–197.

    Article  Google Scholar 

  9. Leyer, I., Mosner, E., & Lehmann, B. (2012). Managing floodplain-forest restoration in European river landscapes combining ecological and flood-protection issues. Ecological Applications, 22, 240–249.

    Article  Google Scholar 

  10. Botequilha Leitão, A., & Ahern, J. (2002). Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59, 65–93.

    Article  Google Scholar 

  11. Martín, B., Ortega, E., Otero, I., & Arce, R. M. (2016). Landscape character assessment with GIS using map-based indicators and photographs in the relationship between landscape and roads. Journal of Environmental Management, 180, 324–334.

    Article  Google Scholar 

  12. Venturelli, R. C., & Galli, A. (2006). Integrated indicators in environmental planning: methodological considerations and applications. Ecological Indicators, 6, 228–237.

    Article  Google Scholar 

  13. Forman, R. T. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology, 10, 133–142.

    Article  Google Scholar 

  14. Giaouris, E., Chorianopoulos, N., Skandamis, P. Y., & Nychas, G. (2012). World’s largest Science, Technology & Medicine Open Access book publisher. Open Science Minds, 450.

  15. McGarigal, K., Cushman, S. A., & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site: Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html.

  16. Uuemaa, E., Mander, Ü., & Marja, R. (2013). Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecological Indicators, 28, 100–106.

    Article  Google Scholar 

  17. Egbert, S. L., Park, S., Price, K. P., Lee, R. Y., Wu, J., & Nellis, M. D. (2003). Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. Computers and Electronics in Agriculture, 37, 141–156.

    Article  Google Scholar 

  18. Boongaling, C. G. K., Faustino-Eslava, D. V., & Lansigan, F. P. (2018). Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: the case of an ungauged catchment in the Philippines. Land Use Policy, 72, 116–128.

    Article  Google Scholar 

  19. Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54.

    Article  Google Scholar 

  20. Yang, X., & Liu, Z. (2005). Quantifying landscape pattern and its change in an estuarine watershed using satellite imagery and landscape metrics. International Journal of Remote Sensing, 26, 5297–5323.

    Article  Google Scholar 

  21. Dufour, S., Rinaldi, M., Piégay, H., & Michalon, A. (2015). How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central-Northern Italy. Landscape and Urban Planning.

  22. Thoms, M. C., Reid, M., Christianson, K., & Munro, F. (2006). Variety is the spice of river life: recognizing hydraulic diversity as a tool for managing flows in regulated rivers. Sediment Dynamics and the Hydromorphology of Fluvial Systems, 306, 169–178.

    Google Scholar 

  23. Papadonikolaki, G., Stamou, A., Dimitriou, E., Bui, M.-D., & Rutschmann, P. (2017). Comparison of two habitat modeling approaches for the determination of the ecological flow. European Water, 58, 301–305.

    Google Scholar 

  24. Li, W., Chen, Q., Cai, D., & Li, R. (2015). Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index. Ecological Modelling, 311, 31–38.

    Article  Google Scholar 

  25. Stewart, G., Anderson, R., & Wohl, E. (2005). Two-dimensional modelling of habitat suitability as a function of discharge on two Colorado rivers. River Research and Applications, 21, 1061–1074.

    Article  Google Scholar 

  26. Wang, F., Lin, B., & Rauen, W. B. (2011). Eco-hydraulics modelling of the ecological water requirement in an Eco-City. In Proceedings of the XIVth IWRA World Water Congress; Pernambuco, Vol. 30, p. 328.

  27. Parasiewicz, P. (2004). MesoHABSIM: A concept for application of instream flow models in river restoration planning. Fisheries, 26, 6–13.

    Article  Google Scholar 

  28. Van Nieuwenhuyse, B. H. J., Antoine, M., Wyseure, G., & Govers, G. (2011). Pattern-process relationships in surface hydrology: hydrological connectivity expressed in landscape metrics. Hydrological Processes, 25, 3760–3773.

    Article  Google Scholar 

  29. Wallis, C., Maddock, I., Visser, F., & Acreman, M. (2012). A framework for evaluating the spatial configuration and temporal dynamics of hydraulic patches. River Research and Applications, 28, 585–593.

    Article  Google Scholar 

  30. Newson, M. D., & Newson, C. L. (2000). Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography-Earth and Environment, 24, 195–217.

    Article  Google Scholar 

  31. Belletti, B., Rinaldi, M., Bussettini, M., Comiti, F., Gurnell, A. M., Mao, L., Nardi, L., & Vezza, P. (2017). Characterising physical habitats and fluvial hydromorphology: a new system for the survey and classification of river geomorphic units. Geomorphology, 283, 143–157.

    Article  Google Scholar 

  32. Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P., & Papanastasis, V. P. (2014). Selecting landscape metrics as indicators of spatial heterogeneity-a comparison among Greek landscapes. International Journal of Applied Earth Observation and Geoinformation, 26, 26–35.

    Article  Google Scholar 

  33. Turitto, O., Audisio, C., & Agangi, A. (2008). Il ruolo svolto da piene straordinarie nel rimodellare la geometria di un alveo fluviale. Il Quaternario Italian Journal of Quaternary Sciences, 21, 303–316.

    Google Scholar 

  34. SIFOR - sistema informativo forestale regionale. La Carta Forestale del Piemonte-aggiornamento. (2016). Available online: http://www.sistemapiemonte.it/montagna/sifor/dwd/aggiornamenti2016/confronto_sup_boscate_2000_2016.pdf.

  35. SMS - The Complete Surface-water Solution | Aquaveo.com. Available online: https://www.aquaveo.com/software/sms-surface-water-modeling-system-introduction.

  36. BASEMENT - Basic Simulation Environment | ETH, Zurich. Available online: http://www.basement.ethz.ch/.

  37. Tamagnone, P. (2016). Numerical models for fixed and mobile bed river systems. Implementations of case studies, Politecnico di Torino.

  38. Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: a review of methods, recent advances and uncertainty analysis. Environmental Modelling and Software, 90, 201–216.

    Article  Google Scholar 

  39. Sowińska-Świerkosz, B. N., & Soszyński, D. (2014). Landscape structure versus the effectiveness of nature conservation: Roztocze region case study (Poland). Ecological Indicators, 43, 143–153.

    Article  Google Scholar 

  40. Leboutillier, D. W., & Waylen, P. (1993). Regional variations in flow-duration curves for rivers in British Columbia. Canada, 14.

  41. Burn, R. (2013). Restoring meanders to straightened rivers.

  42. Environment Agency Bringing your rivers back to life. Available online: https://www.therrc.co.uk/MOT/References/EA_Restoring_Rivers_NLondon.pdf.

  43. CIRF. La riqualificazione fluviale in Italia. Linee guida, strumenti edesperienze per gestire i corsi d’acqua e il territorio; Mazzanti Editori, 2006; ISBN 88–88114–66-1.

  44. River restoration in Europe: practical approaches; Institute for Inland Water Management and Waste Water Treatment: Lelystad, Netherlands. (2001). ISBN 978–90–369-5377-1.

  45. Leitão, A. B., Miller, J., Ahern, J., & McGarigal, K. (2012). Measuring landscapes: a planner’s handbook. Washington, D.C.: Island Press ISBN 1597267724.

    Google Scholar 

  46. Whitcomb, R. F., Robbins, C. S., Lynch, J. F., Whitcomb, B. L., Klimkiewicz, M. K., & Bystrak, D. (1981). Effects of forest fragmentation on avifauna of the eastern deciduous forest. In R. L. Burgess & D. M. Sharpe (Eds.), Forest Island Dynamics in Man-Dominated Landscapes (pp. 125–205). New York: Springer-Verlag.

    Chapter  Google Scholar 

  47. Small, M. F., & Hunter, M. L. (1988). Forest fragmentation and avian nest predation in forested landscapes. Oecologia, 76, 62–64.

    Article  CAS  Google Scholar 

  48. Bender, D. A., Contreras, T., & Fahrig, L. (1998). Habitat loss and population decline: a meta-analysis of the patch size effect, Vol. 79.

  49. Rosso, M., Comino, E., Ivo, F., & Furio, D. (2008). Programma di Gestione dei Sedimenti per il torrente Orco.

  50. Dick, D. D. C., & Ayllón, D. (2017). FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands. Ecological Modelling, 348, 110–124.

    Article  Google Scholar 

  51. Laasonen, P., Muotka, T., & Kivijärvi, I. (1998). Recovery of macroinvertebrate communities from stream habitat restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 101–113.

    Article  Google Scholar 

  52. Nakano, D., Nagayama, S., Kawaguchi, Y., & Nakamura, F. (2008). River restoration for macroinvertebrate communities in lowland rivers: insights from restorations of the Shibetsu River, North Japan. Landscape and Ecological Engineering, 4, 63–68.

    Article  Google Scholar 

  53. Gregory, S., Boyer, K. L., & Gurnell, A. M. (2003). Ecology and management of wood in world rivers. In Proceedings of the International Conference of Wood in World Rivers (2000: Corvallis, Or.); American Fisheries Society.

  54. Opdam, P. (1991). Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landscape Ecology, 5, 93–106.

    Article  Google Scholar 

  55. Ali, A., de Bie, C. A. J. M., Skidmore, A. K., Scarrott, R. G., & Lymberakis, P. (2014). Mapping the heterogeneity of natural and semi-natural landscapes. International Journal of Applied Earth Observation and Geoinformation, 26, 176–183.

    Article  Google Scholar 

  56. Alhamad, M. N., Alrababah, M. A., Feagin, R. A., & Gharaibeh, A. (2011). Mediterranean drylands: the effect of grain size and domain of scale on landscape metrics. Ecological Indicators, 11, 611–621.

    Article  Google Scholar 

  57. Feng, Y., & Liu, Y. (2015). Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics. Ecological Indicators, 53, 18–27.

    Article  Google Scholar 

  58. Turner, M. G., O’Neill, R. V., Gardner, R. H., & Milne, B. T. (1989). Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3, 153–162.

    Article  Google Scholar 

  59. Wiens, J. A. (1976). Population responses to patchy environments. Annual Review of Ecology and Systematics, 7, 81–120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tamagnone.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamagnone, P., Comino, E. & Rosso, M. Landscape Metrics Integrated in Hydraulic Modeling for River Restoration Planning. Environ Model Assess 25, 173–185 (2020). https://doi.org/10.1007/s10666-020-09693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-020-09693-y

Keywords

Navigation