Skip to main content

Advertisement

Log in

An update on the performance of active energy meters under non-sinusoidal conditions

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The performance of electrical energy meters in non-sinusoidal conditions has been discussed since the early twentieth century and as of yet has not reached a fully comprehensive standardization. Within this context, this paper aims to update the present understanding on the subject through a closer look at the power definitions established by the IEEE Std. 1459-2010. The paper concentrates its goals across two different approaches. The first deals with the analytical development in the time domain, aiming at the decomposition of the instantaneous power in its different elementary components. The second, in turn, deals with the development of several calibration tests in different active electrical energy meters considering different voltage and current waveforms. The results show that the measurement deviations in non-sinusoidal conditions may be greater than 30% in some practical cases, which reinforces the need for more specific standards concerning the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hollister VL (1915) The induction watt-hour meter. Proc Am Inst Electr Eng. https://doi.org/10.1109/PAIEE.1915.6590211

    Article  Google Scholar 

  2. IEEE 1459 (2010) IEEE Standard Definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions.

  3. Dannatt C (1937) The metering of mercury-arc rectifier supplies and outputs. J Inst Electr Eng. https://doi.org/10.1049/jiee-1.1937.0139

    Article  Google Scholar 

  4. Weller CT, Trekell HE, Stebbins FO (1940) Watt-hour meter performance with power rectifiers. Trans Am Inst Electr Eng. https://doi.org/10.1109/T-AIEE.1940.5058161

    Article  Google Scholar 

  5. Keener CA, Faucett MA, Helm MS (1941) Magnetic fields in Watt-hour meters’ effects of wave form on the registration of single-phase Watt-Hour Meters. Trans Am Inst Electr Eng. https://doi.org/10.1109/T-AIEE.1941.5058314

    Article  Google Scholar 

  6. Girgs AA, Baldwin TL, Makram EB, Fortson HS (1990) Testing the performance of three-phase induction Watt-Hour meters in the presence of harmonic distortion. IEEE Trans Ind Appl https://doi.org/10.1109/28.55995

    Article  Google Scholar 

  7. Saied MM (1995) On the accuracy of Watt-hour meters in nonsinusoidal Environment. IEEE Ind Appl Conf. https://doi.org/10.1109/IAS.1995.530585

    Article  Google Scholar 

  8. Ferrero A, Muscas C (2000) On the selection of the “Best” test waveform for calibrating electrical instruments under nonsinusoidal conditions. IEEE Trans Instrum Meas. https://doi.org/10.1109/19.843082

    Article  Google Scholar 

  9. Dán A, Raisz D (2004) What do and what should digital revenue meters measure on distorted networks? In 11th international conference on harmonics and quality of power. https://doi.org/10.1109/ICHQP.2004.1409368

  10. Georgakopoulos D, Wright PS (2006) Calibration of energy and power meters under non-sinusoidal conditions. IEEE Proc Sci Meas Technol. https://doi.org/10.1049/ip-smt:20050098

    Article  Google Scholar 

  11. Caiceres R, Correa R, Ferreyra P, Cordero E (2006) Study of active electric energy meters behavior of induction and electronic types. IEEE PES Trans Distrib Conf Expos. https://doi.org/10.1109/TDCLA.2006.311557

    Article  Google Scholar 

  12. Georgakopoulos D, Wright PS (2007) Exercising the dynamic range of active power meters under nonsinusoidal conditions. IEEE Trans Instrum Meas. https://doi.org/10.1109/TIM.2007.890596

    Article  Google Scholar 

  13. Kusljevic MD, Tomic JJ, Marcetic DP (2009) Active power measurement algorithm for power system signals under non-sinusoidal conditions and wide-range frequency deviations. IET Gener Trans Distrib. https://doi.org/10.1049/iet-gtd:20080158

    Article  Google Scholar 

  14. Sen O, Xuntao S (2010) The analysis of power meters' performance under nonsinusoidal conditions. Int Conf Power Syst Technol. https://doi.org/10.1109/POWERCON.2010.5666717

    Article  Google Scholar 

  15. Novotny J, Drapela J, Topolanek D (2016) Frequency response of revenue meters in measured active energy. In: 17th international conference on harmonics and quality of power. https://doi.org/10.1109/ICHQP.2016.7783309

  16. Leferink F, Keyer C, Melentjev A (2016) Static energy meter errors caused by conducted electromagnetic interference. IEEE Electromagn Compat Mag. https://doi.org/10.1109/MEMC.2016.7866234

    Article  Google Scholar 

  17. Emanuel AE (2010) Power definitions and the physical mechanism of power flow. https://doi.org/10.1002/9780470667149

Download references

Acknowledgements

The authors thank the Energisa Group for the financial support as part of the Program for Research and Technological Development of the Electricity Energy Sector, established by the Brazilian Electricity Regulatory Agency (ANEEL). Additionally, this study was financed in part by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001 and by the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Rubens Macedo Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 1577 kb)

Appendices

Appendix A: Data associated with the tests performed

Test number

Harmonic order

rms Voltage (V)

Angle (°)

rms Current (Amp)

Angle (°)

#1

1

120.0

0.0

10.0

0.0

#2

1

120.0

0.0

10.0

0.0

5

12.0

0.0

#3

1

120.0

0.0

10.0

0.0

5

5.0

0.0

#4

1

120.0

0.0

10.0

0.0

5

10.0

0.0

7

5.0

0.0

#5

1

120.0

0.0

10.0

0.0

5

12.0

0.0

5.0

0.0

#6

1

120.0

0.0

10.0

0.0

5

12.0

0.0

5.0

180.0

#7

1

120.0

0.0

10.0

0.0

7

12.0

0.0

5.0

0.0

#8

1

120.0

0.0

10.0

0.0

7

12.0

0.0

5.0

180.0

#9

1

120.0

0.0

10.0

-32.0

3

12.0

10.0

1.0

145.0

5

24.0

45.0

2.0

170.0

#10

1

120.0

0.0

10.0

329.4

3

1.380

166.8

8.416

292.8

5

4.656

217.8

6.995

29.4

7

0.780

272.3

5.313

36.5

9

0.648

235.5

3.694

92.0

11

0.804

50.0

2.618

141.1

13

0.573

66.8

2.566

199.1

15

0.030

325.8

0.792

310.7

17

0.134

217.1

2.587

315.8

19

0.076

189.9

1.031

63.9

21

0.031

11.8

2.249

71.6

23

0.028

241.3

0.726

147.9

25

0.045

178.1

1.468

185.2

27

0.003

180.3

0.864

260.6

Appendix B: Numerical results of the tests performed

Test

Meter

Reference

PMeas (W)

Error (%)

Test

Meter

Reference

PMeas (W)

Error (%)

P1 (W)

P (W)

Pref = P1

Pref = P

P1 (W)

P (W)

Pref = P1

Pref = P

#1

A.1

1200.0

1200.0

1209.89

0.82

0.82

#6

A.1

1200.0

1140.0

1171.87

2.34

2.80

A.2

1200.0

1200.0

1187.71

− 1.02

− 1.02

A.2

1200.0

1140.0

1168.07

2.66

2.46

A.3

1200.0

1200.0

1198.15

− 0.15

− 0.15

A.3

1200.0

1140.0

1142.39

4.80

0.21

B.1

1200.0

1200.0

1199.16

− 0.07

− 0.07

B.1

1200.0

1140.0

1138.48

5.13

− 0.13

B.2

1200.0

1200.0

1199.38

− 0.05

− 0.05

B.2

1200.0

1140.0

1140.48

4.96

0.04

B.3

1200.0

1200.0

1197.67

− 0.19

− 0.19

B.3

1200.0

1140.0

1137.32

5.22

− 0.24

C.1

1200.0

1200.0

1199.07

− 0.08

− 0.08

C.1

1200.0

1140.0

1151.18

4.07

0.98

D.1

1200.0

1200.0

1211.58

0.96

0.96

D.1

1200.0

1140.0

1150.65

4.11

0.93

E.1

1200.0

1200.0

1192.62

− 0.62

− 0.62

E.1

1200.0

1140.0

1145.25

4.56

0.46

#2

A.1

1200.0

1200.0

1190.40

0.80

0.80

#7

A.1

1200.0

1260.0

1238.46

3.21

− 1.71

A.2

1200.0

1200.0

1210.82

− 0.90

− 0.90

A.2

1200.0

1260.0

1222.26

1.86

3.00

A.3

1200.0

1200.0

1202.40

− 0.20

− 0.20

A.3

1200.0

1260.0

1253.79

4.48

− 0.49

B.1

1200.0

1200.0

1201.08

− 0.09

− 0.09

B.1

1200.0

1260.0

1256.93

4.74

− 0.24

B.2

1200.0

1200.0

1200.62

− 0.05

− 0.05

B.2

1200.0

1260.0

1257.64

4.80

− 0.19%

B.3

1200.0

1200.0

1202.52

− 0.21

− 0.21

B.3

1200.0

1260.0

1256.08

4.67

− 0.31

C.1

1200.0

1200.0

1200.93

− 0.08

− 0.08

C.1

1200.0

1260.0

1231.68

2.64

2.25

D.1

1200.0

1200.0

1189.32

0.89

0.89

D.1

1200.0

1260.0

1261.63

5.14

0.13

E.1

1200.0

1200.0

1207.08

− 0.59

− 0.59

E.1

1200.0

1260.0

1248.96

4.08

− 0.88

#3

A.1

1200.0

1200.0

1189.08

0.91

0.91

#8

A.1

1200.0

1140.0

1184.55

− 1.29

3.91

A.2

1200.0

1200.0

1213.20

− 1.10

− 1.10

A.2

1200.0

1140.0

1177.63

− 1.86

3.30

A.3

1200.0

1200.0

1202.40

− 0.20

− 0.20

A.3

1200.0

1140.0

1145.23

4.56

0.46

B.1

1200.0

1200.0

1200.84

− 0.07

− 0.07

B.1

1200.0

1140.0

1138.72

5.11

− 0.11

B.2

1200.0

1200.0

1200.84

− 0.07

− 0.07

B.2

1200.0

1140.0

1141.41

4.88

0.12

B.3

1200.0

1200.0

1201.92

− 0.16

− 0.16

B.3

1200.0

1140.0

1138.94

5.09

− 0.09

C.1

1200.0

1200.0

1200.93

− 0.08

− 0.08

C.1

1200.0

1140.0

1167.48

2.71

2.41

D.1

1200.0

1200.0

1190.40

0.80

0.80

D.1

1200.0

1140.0

1153.93

3.84

1.22

E.1

1200.0

1200.0

1207.80

− 0.65

− 0.65

E.1

1200.0

1140.0

1143.54

4.71

0.31

#4

A.1

1200.0

1200.0

1190.76

0.77

0.77

#9

A.1

1017.7

981.6

996.23

2.11

1.49

A.2

1200.0

1200.0

1213.20

− 1.10

− 1.10

A.2

1017.7

981.6

983.46

3.36

0.19

A.3

1200.0

1200.0

1202.40

− 0.20

− 0.20

A.3

1017.7

981.6

981.77

3.53

0.01

B.1

1200.0

1200.0

1200.84

− 0.07

− 0.07

B.1

1017.7

981.6

981.49

3.55

− 0.02

B.2

1200.0

1200.0

1200.60

− 0.05

− 0.05

B.2

1017.7

981.6

981.71

3.53

0.01

B.3

1200.0

1200.0

1202.64

− 0.22

− 0.22

B.3

1017.7

981.6

980.18

3.68

− 0.15

C.1

1200.0

1200.0

1200.93

− 0.08

− 0.08

C.1

1017.7

981.6

989.13

2.80

0.76

D.1

1200.0

1200.0

1187.88

1.01

1.01

D.1

1017.7

981.6

995.91

2.14

1.45

E.1

1200.0

1200.0

1206.84

− 0.57

− 0.57

E.1

1017.7

981.6

991.25

2.60

0.98

#5

A.1

1200.0

1260.0

1249.02

4.09

− 0.87

#10

A.1

988.9

1033.2

1052.32

6.41

1.85

A.2

1200.0

1260.0

1229.47

2.46

2.42

A.2

988.9

1033.2

1051.58

6.33

1.78

A.3

1200.0

1260.0

1256.36

4.70

− 0.29

A.3

988.9

1033.2

1070.72

8.27

3.63

B.1

1200.0

1260.0

1257.32

4.78

− 0.21

B.1

988.9

1033.2

1071.82

8.38

3.73

B.2

1200.0

1260.0

1259.48

4.96

− 0.04

B.2

988.9

1033.2

1075.40

8.74

4.08

B.3

1200.0

1260.0

1256.57

4.71

− 0.27

B.3

988.9

1033.2

1285.68

30.01

24.43

C.1

1200.0

1260.0

1247.35

3.95

− 1.00

C.1

988.9

1033.2

1065.48

7.74

3.12

D.1

1200.0

1260.0

1264.34

5.36

0.34

D.1

988.9

1033.2

1082.78

9.49

4.80

E.1

1200.0

1260.0

1230.64

2.55

2.33

E.1

988.9

1033.2

1071.25

8.32

3.68

  1. Highlighted values indicate results out of the accuracy range

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, J.R., Xavier, G.L., Gondin, I.N. et al. An update on the performance of active energy meters under non-sinusoidal conditions. Electr Eng 102, 1785–1794 (2020). https://doi.org/10.1007/s00202-020-00991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00991-y

Keywords

Navigation