Skip to main content
Log in

Ferroresonance evaluation on capacitor voltage transformers

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Ferroresonance has been a widely studied area in the last few decades due to the nonlinear behavior and power quality problems it presents. Some power quality problems related to the ferroresonance phenomenon are sustained overvoltage and overcurrent and maintained levels of waveform distortions. The phenomenon can lead to the dielectric breakdown of electrical equipment, thermal problems, and misoperation of protective relays. It can present itself in a circuit that involves a nonlinear inductance associated with capacitance and low losses. This paper analyzes the ferroresonance test in a capacitor voltage transformer through Simulink® simulation. It divided a cycle of a sine wave into 72 different points to apply controlled short-circuits in the secondary terminal of the transformer. The aim is to study the relationship between the time when a short-circuit is applied, and the peak voltage of the first positive half-cycle after the short-circuit is removed. Therefore, the worst-case scenario of the short-circuit application was verified. Results demonstrate that there is a most critical situation during short-circuits at the CVT’s secondary terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh B, Chandra A, Al-Haddad K (eds) (2014) Power quality: an introduction. In: Power quality problems and mitigation techniques, 1st edn. Wiley. https://doi.org/10.1002/9781118922064.ch01

  2. Ferracci P (1998) Cahier technique: ferroresonance. Schneider electric. rep. no. 190. [Online] Available: https://www.se.com/br/pt/download/document/ECT190/

  3. Ribas JCL, Lourenço EM, Leite JV, Batistela NJ (2013) Modelling ferroresonance phenomena with a flux-current Jiles–Atherton hysteresis approach. IEEE Trans Mag 49(5):1797–1800. https://doi.org/10.1109/TMAG.2013.2243908

    Article  Google Scholar 

  4. Rezaei S (2015) Impact of ferroresonance on protective relays in Manitoba Hydro 230 kV electrical network. In: IEEE international conference on environment and electrical engineering (EEEIC). Rome, Italy, pp 1694–1699. https://doi.org/10.1109/eeeic.2015.7165427

  5. He Z, Li X, Qin J, Huang H (2018) Study on ferroresonance over-voltage based on harmonic elimination device. In: International conference on virtual reality and intelligent systems (ICVRIS). Hunan, China, pp 460–465. https://doi.org/10.1109/icvris.2018.00119

  6. Ali Z, Peng SA, Norfauzi M (2015) Graphical analysis of ferroresonance modes in a voltage transformer energized through grading capacitance using correlation functions. In: TENCON 2015—IEEE region 10 conference. Macao, China, pp 1–5. https://doi.org/10.1109/tencon.2015.7373195

  7. Poornima S, Sugumaran CP (2016) Identification of ferroresonance phenomena using wavelet transforms. In: International conference on control, instrumentation, communication and computational. Kumaracoil, India, pp 126–131. https://doi.org/10.1109/iccicct.2016.7987930

  8. Pineda REP, Rodrigues R, Tellez AA (2018) Analysis and simulation of ferroresonance in power transformers using Simulink. IEEE Latin Am Trans 16(2):460–466. https://doi.org/10.1109/TLA.2018.8327400

    Article  Google Scholar 

  9. Jazebi S, Farazmand A, Murali BP, de Leon F (2012) A comparative study on π and T equivalent models for the analysis of transformer ferroresonance. IEEE Trans Power Deliv 28(1):526–528. https://doi.org/10.1109/TPWRD.2012.2220637

    Article  Google Scholar 

  10. Khan SA, Bakar AHA, Rahim NA, Tan C (2014) Analysis of ferroresonance suppression and transient response performances for various ferroresonance suppression circuits in capacitive voltage transformers. In: 3rd IET international conference on clean energy and technology (CEAT) 2014. Kuching, Malasya. https://doi.org/10.1049/cp.2014.1474

  11. Fernandes D Jr, Neves WLA, Vasconcelos JCA (2017) Coupling capacitor voltage transformer: a model for electromagnetic transient studies. Electr Power Syst Res 77(2):125–134. https://doi.org/10.1016/j.epsr.2006.02.2007

    Article  Google Scholar 

  12. Graovac M, Iravani R, Wang X, McTaggart RD (2003) Fast ferroresonance suppression of coupling capacitor voltage transformers. IEEE Trans Power Deliv 18(1):158–163. https://doi.org/10.1109/TPWRD.2002.803837

    Article  Google Scholar 

  13. Iravani MR, Wang X, Polishchuk I, Ribeiro J, Sarshar A (1998) Digital time-domain investigation of transient behaviour of coupling capacitor voltage transformer. IEEE Trans Power Deliv 13(2):622–629. https://doi.org/10.1109/61.660947

    Article  Google Scholar 

  14. Corea-Araujo JA, González-Molina F, Martínez JA, Barrado-Rodrigo JA, Guash-Pesquer L (2014) Tools for characterization and assessment of ferroresonance using 3-D bifurcation diagrams. IEEE Trans Power Deliv 29(6):2543–2551. https://doi.org/10.1109/TPWRD.2014.2320599

    Article  Google Scholar 

  15. IEC (2015) IEC instruments transformers—part 5: additional requirements for capacitor voltage transformers. IEC 61869-5

  16. ANSI (1999) ANSI requirements for power-line carrier coupling capacitors and coupling capacitor voltage transformers (CCVT), ANSI C93.1

  17. Cury DV, Oleskovicz M, Giovanini R (2007) Filosofias de Proteção dos Elementos dos Sistemas Elétricos de Potência. In: Proteção Digital de Sistemas Elétricos de Potência: Dos Relés Eltetromecânicos aos Microprocessados Inteligentes, 1st edn. EDUSP, São Carlos, pp 51–52

  18. Neves WLA, Dommel HW (1993) On modelling iron core nonlinearities. IEEE Trans Power Syst 8(2):417–425. https://doi.org/10.1109/59.260845

    Article  Google Scholar 

  19. Junior AVC (2008) Interação transitória entre transformadores de potencial capacitivos e linhas de transmissão: Uma contribuição para minimizar falhas. M.S. thesis, PPGEE, UFPE, Recife, PE, Brazil

  20. Santos AKX, Júnior DF (2009) Análise do comportamento de transformadores de potencial capacitivos frente a sobretensões transitórias em sistemas elétricos de potência. In: VI Congresso de Iniciação Científica da Universidade Federal de Campina Grande. Campina Grande, PB, Brazil

  21. Masoum MAS, Fuchs EF (2015) Harmonic models of transformers. In: Fuchs E, Masoum M (eds) Power quality in power systems and electrical machines, 2nd edn. Elsevier, Amsterdam, pp 105–205

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the partial support by CNPq—Conselho Nacional de DesenvolvimentoCientífico e Tecnológico—Brasil, INERGE—Instituto Nacional de EnergiaElétrica, and TAESA (P&D) ANEEL Project PD-07130-0053/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Zamboti Fortes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, P.H.B.S., Vidal, M.L.C., da Rocha, F.F. et al. Ferroresonance evaluation on capacitor voltage transformers. Electr Eng 102, 1775–1783 (2020). https://doi.org/10.1007/s00202-020-00992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00992-x

Keywords

Navigation