Skip to main content

Advertisement

Log in

Adaptation mechanism techniques for improving a model reference adaptive speed observer in wind energy conversion systems

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Rotational speed sensor is one of the most important components used in wind energy conversion system control strategies. The latter is very expensive and may be faulty due to the harsh environment working, causing by that a low efficiency operation of the system. The use of a speed estimator or an observer may be a good alternative solution for the use either in sensorless control or detecting the sensor failure or degradation (FDI and FTC), provided that the observer is robust and ensures high rotational speed estimation accuracy. This paper presents a comprehensive study to solve the optimization problem of a model reference adaptive speed (MRAS) observer in a typical wind energy generation system based on permanent magnet synchronous generator using five adaptation mechanisms: The first one is the classical MRAS observer; it is based on proportional–integral (PI) controller. The second one uses a fuzzy logic controller (FLC) with two inputs. The third one uses the single-input fuzzy logic controller which represents the simplification of the conventional FLC. The fourth one uses the sliding mode controller, and the last one uses the super-twisting algorithm. A detailed comparison between the five adaptation mechanisms is carried out. The obtained results show a good estimation stability as well as a fast speed estimation at dynamic regime for the improved adaptation mechanisms compared with the conventional PI controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Al-Ghossini H et al (2016) Adaptive-tuning of extended Kalman filter used for small scale wind generator control. Renew Energy 85:1237–1245

    Article  Google Scholar 

  2. Carranza O et al (2011) Comparative study of speed estimators with highly noisy measurement signals for Wind Energy Generation Systems. Appl Energy 88(3):805–813

    Article  Google Scholar 

  3. Brahmi J, Krichen L, Ouali A (2009) A comparative study between three sensorless control strategies for PMSG in wind energy conversion system. Appl Energy 86(9):1565–1573

    Article  Google Scholar 

  4. Cardenas R et al (2005) MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans Energy Convers 20(4):710–718

    Article  Google Scholar 

  5. Ramesh T, Panda AK, Kumar SS (2015) Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive. ISA Trans 57(2015):262–275

    Article  Google Scholar 

  6. Kim H-W, Sul S-K (1996) A new motor speed estimator using Kalman filter in low-speed range. IEEE Trans Ind Electron 43(4):498–504

    Article  Google Scholar 

  7. Qiao W, Yang X, Gong X (2012) Wind speed and rotor position sensorless control for direct-drive PMG wind turbines. IEEE Trans Ind Appl 48(1):3–11

    Article  Google Scholar 

  8. Fantino R, Solsona J, Busada C (2016) Nonlinear observer-based control for PMSG wind turbine. Energy 113:248–257

    Article  Google Scholar 

  9. Aubrée R et al (2016) Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy. Renew Energy 86:280–291

    Article  Google Scholar 

  10. Echchaachouai A, El Hani S, Hammouch A (2018) Comparison of three estimators used in a sensorless MPPT strategy for a wind energy conversion chain based on a PMSG. Przegląd Elektrotechniczny 94:18–22

    Google Scholar 

  11. Lin W-M, Hong C-M, Cheng F-S (2011) Design of intelligent controllers for wind generation system with sensorless maximum wind energy control. Energy Convers Manag 52(2):1086–1096

    Article  MathSciNet  Google Scholar 

  12. Khlaief A, Boussak M, Chaari A (2014) A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive. Electr Power Syst Res 108:1–15

    Article  Google Scholar 

  13. Gadoue SM, Giaouris D, Finch JW (2010) MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms. IEEE Trans Energy Convers 25(2):394–402

    Article  Google Scholar 

  14. Yan J et al (2013) Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renew Power Gener 7(1):28–35

    Article  Google Scholar 

  15. Panda AK, Ramesh T, Kumar SS (2016) Rotor-flux-based MRAS speed estimator for DTFC-SVM of a speed sensorless induction motor drive using Type-1 and Type-2 fuzzy logic controllers over a wide speed range. Int Trans Electr Energy Syst 26(9):1863–1881

    Article  Google Scholar 

  16. Cirrincione M, Pucci M (2005) Sensorless direct torque control of an induction motor by a TLS-based MRAS observer with adaptive integration. Automatica 41(11):1843–1854

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao Y et al (2013) A review on position/speed sensorless control for permanent-magnet synchronous machine-based wind energy conversion systems. IEEE J Emerg Sel Top Power Electron 1(4):203–216

    Article  Google Scholar 

  18. Abdullah MA et al (2012) A review of maximum power point tracking algorithms for wind energy systems. Renew Sustain Energy Rev 16(5):3220–3227

    Article  Google Scholar 

  19. Eltamaly AM, Farh HM (2013) Maximum power extraction from wind energy system based on fuzzy logic control. Electr Power Syst Res 97:144–150

    Article  Google Scholar 

  20. Zhang Z et al (2014) A space-vector-modulated sensorless direct-torque control for direct-drive PMSG wind turbines. IEEE Trans on Ind Appl 50(4):2331–2341

    Article  Google Scholar 

  21. Errami Y, Ouassaid M, Maaroufi M (2015) A performance comparison of a nonlinear and a linear control for grid connected PMSG wind energy conversion system. Int J Electr Power Energy Syst 68:180–194

    Article  Google Scholar 

  22. Krishna SM, Daya JLF (2016) MRAS speed estimator with fuzzy and PI stator resistance adaptation for sensorless induction motor drives using RT-lab. Perspect Sci 8:121–126

    Article  Google Scholar 

  23. Farhat M, Barambones O, Sbita L (2015) Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller. Renew Sustain Energy Rev 49:907–920

    Article  Google Scholar 

  24. Choi BJ, Kwak SW, Kim BK (2000) Design and stability analysis of single-input fuzzy logic controller. IEEE Trans Syst Man Cybern Part B (Cybern) 30(2):303–309

    Article  Google Scholar 

  25. Choi BJ, Kwak SW, Kim BK (1999) Design of a single-input fuzzy logic controller and its properties. Fuzzy Sets Syst 106(3):299–308

    Article  MathSciNet  MATH  Google Scholar 

  26. Yadav AK, Gaur P (2014) Robust adaptive speed control of uncertain hybrid electric vehicle using electronic throttle control with varying road grade. Nonlinear Dyn 76(1):305–321

    Article  MathSciNet  MATH  Google Scholar 

  27. Bouafassa A, Rahmani L, Mekhilef S (2015) Design and real time implementation of single phase boost power factor correction converter. ISA Trans 55:267–274

    Article  Google Scholar 

  28. Derbeli M et al (2017) Control of PEM fuel cell power system using sliding mode and super-twisting algorithms. Int J Hydrogen Energy 42(13):8833–8844

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Center for Scientific and Technical Research (CNRST) of Morocco and the Embassy of France in Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benzaouia Soufyane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soufyane, B., Abdelhamid, R. & Smail, Z. Adaptation mechanism techniques for improving a model reference adaptive speed observer in wind energy conversion systems. Electr Eng 102, 1621–1637 (2020). https://doi.org/10.1007/s00202-020-00984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-00984-x

Keywords

Navigation