Skip to main content
Log in

The bivariate Müntz wavelets composite collocation method for solving space-time-fractional partial differential equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Herein, we consider an effective numerical scheme for numerical evaluation of three classes of space-time-fractional partial differential equations (FPDEs). We are going to solve these problems via composite collocation method. The procedure is based upon the bivariate Müntz–Legendre wavelets (MLWs). The bivariate Müntz–Legendre wavelets are constructed for first time. The bivariate MLWs operational matrix of fractional-order integral is constructed. The proposed scheme transforms FPDEs to the solution of a system of algebraic equations which these systems will be solved using the Newton’s iterative scheme. Also, the error analysis of the suggested procedure is determined. To test the applicability and validity of our technique, we have solved three classes of FPDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abd-Elhameed WM, Youssri YH (2018) Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput Appl Math 37(3):2897–2921

    MathSciNet  MATH  Google Scholar 

  • Abdulaziz O, Hashim I, Momani S (2008) Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett A 372:451–459

    MathSciNet  MATH  Google Scholar 

  • Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73:5–59

    MathSciNet  MATH  Google Scholar 

  • Benson DA, Meerschaert MM, Revielle J (2013) Fractional calculus in hydrologic modeling: a numerical perspective. Adv Water Resour 51:479–497

    Google Scholar 

  • Beylkin G, Coifman R, Rokhlin V (1991) Fast wavelet transforms and numerical algorithms I. Commun Pure Appl Math 44:141–183

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Baleanu D (2013) A spectral Legendre–Gauss–Lobatto collocation method for a spacefractional advection–diffusion equations with variable coefficients. Rep Math Phys 72:219–233

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895

    MathSciNet  MATH  Google Scholar 

  • Bohannan GW (2008) Analog fractional order controller in temperature and motor control applications. J Vib Control 14:1487–1498

    MathSciNet  Google Scholar 

  • Chen Y, Wu Y, Cui Y, Wang Z, Jin D (2010) Wavelet method for a class of fractional convection–diffusion equation with variable coefficients. J Comput Sci 1:146–149

    Google Scholar 

  • Chen Y, Sun Y, Liu L (2014) Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl Math Comput 244:847–858

    MathSciNet  MATH  Google Scholar 

  • Chui CK (1997) Wavelets: a mathematical tool for signal analysis. SIAM, Philadelphia

    MATH  Google Scholar 

  • Daftardar-Gejji V, Bhalekar S (2010) Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Comput Math Appl 59:1801–1809

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2018) A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput Math Appl 75(8):2903–2914

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2018) An eficient technique based on finite difference/finite element method for solution of twodimensional space/multi-time fractional Bloch-Torrey equations. Appl Numer Math 131:190–206

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M (2019) Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time. J Comput Appl Math 356:314–328

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Safarpoor M (2016) The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations. Math Methods Appl Sci 39:3979–3995

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Manafian J, Abbaszadeh M (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26(2):448–479

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2016) Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl Math Model 40(5–6):3635–3654

    MathSciNet  MATH  Google Scholar 

  • Esmaeili sh, Shamsi M, Luchko Y (2011) Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput Math Appl 62:918–929

    MathSciNet  MATH  Google Scholar 

  • Hall MG, Barrick TR (2008) From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 59:447–455

    Google Scholar 

  • He J (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167:57–68

    MathSciNet  MATH  Google Scholar 

  • He JH (1999) Some applications of nonlinear fractional differential equations and their approximations. Bull Sci Technol 15(2):86–90

    Google Scholar 

  • Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Fereidouni F (2013) Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng Anal Bound Elem 37:1331–1338

    MathSciNet  MATH  Google Scholar 

  • Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl Math Comput 234:267–276

    MathSciNet  MATH  Google Scholar 

  • Hormander L (1990) The analysis of linear partial differential operators. Springer, Berlin

    MATH  Google Scholar 

  • Hu X, Zhang L (2012) Implicit compact difference schemes for the fractional cable equation. Appl Math Model 36:4027–4043

    MathSciNet  MATH  Google Scholar 

  • Lakestani M, Razzaghi M, Dehghan M (2006) Semi orthogonal spline wavelets approximation for Fredholm integro-differential equations. Math Probl Eng 2006:1–12

    MATH  Google Scholar 

  • Lakestani M, Dehghan M, Irandoust-pakchin S (2012) The construction of operational matrix of fractional derivatives using B-spline functions. Commun Nonlinear Sci Numer Simul 17(3):1149–1162

    MathSciNet  MATH  Google Scholar 

  • Larsson S, Racheva M, Saedpanah F (2015) Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput Methods Appl Mech Eng 283:196–209

    MathSciNet  MATH  Google Scholar 

  • Li Y (2010) Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun Nonlinear Sci Numer Simul 15(9):2284–2292

    MathSciNet  MATH  Google Scholar 

  • Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225:1533–1552

    MathSciNet  MATH  Google Scholar 

  • Lin Y, Li X, Xu C (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80:1369–1396

    MathSciNet  MATH  Google Scholar 

  • Magin RL (2004) Fractional calculus in bioengineering. Crit Rev Biomed Eng 32:1–104

    Google Scholar 

  • Mashayekhi S, Razzaghi M (2015) Numerical solution of nonlinear fractional integro-differential equations by hybrid functions. Eng Anal Bound Elem 56:81–89

    MathSciNet  MATH  Google Scholar 

  • Momani S, Odibat Z (2008) Numerical solutions of the space-time fractional advection–dispersion equation. Numer Methods Partial Differ Equ 24(6):1416–1429

    MathSciNet  MATH  Google Scholar 

  • Odibat Z, Shawagfeh NT (2007) Generalized Taylor’s formula. Appl Math Comput 186(1):286–293

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2016) Fractional-order Bernoulli wavelets and their applications. Appl Math Model 40:8087–8107

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2017) Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Appl Numer Math 122:66–81

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer Algorithms 74:223–245

    MathSciNet  MATH  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2018) Müntz–Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer Algorithms 77(4):1283–1305

    MathSciNet  MATH  Google Scholar 

  • Rehman M, Rahmat RA (2011) The Legendre wavelet method for solving fractional differential equations. Commun Nonlinear Sci Numer Simul 16(11):4163–4173

    MathSciNet  MATH  Google Scholar 

  • Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67

    Google Scholar 

  • Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc–Legendre collocation method for aclass of fractional convection–diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul 17:4125–4136

    MathSciNet  MATH  Google Scholar 

  • Sabermahani S, Ordokhani Y, Yousefi SA (2018) Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput Appl Math 37(3):3846–3868

    MathSciNet  MATH  Google Scholar 

  • Saeedi H, Mohseni Moghadam M, Mollahasani N, Chuev GN (2011) A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun Nonlinear Sci Numer Simul 16(3):1154–1163

    MathSciNet  MATH  Google Scholar 

  • Shamsi M, Razzaghi M (2005) Solution of Hallen’s integral equation using multiwavelets. Comput Phys Commun 168:187–197

    MATH  Google Scholar 

  • Singh BK, Kumar P (2017) Homotopy perturbation transform method for solving fractional partial differential equations with proportional delay. SeMA 75(1):111–125

    MathSciNet  MATH  Google Scholar 

  • Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Wei J, Chen Y, Li B, Yi M (2012) Numerical solution of space-time fractional convection–diffusion equations with variable coefficients using Haar wavelets. Comput Model Eng Sci 89(6):481–495

    MATH  Google Scholar 

  • Zheng M, Liu F, Turner I, Anh V (2015) A novel high order space-time spectral method for the time fractional Fokker–Planck equation. SIAM J Sci Comput 37:A701–A724

    MathSciNet  MATH  Google Scholar 

  • Zhu L, Fan Q (2013) Numerical solution of nonlinear fractionalorder Volterra integro-differential equations by SCW. Commun Nonlinear Sci Numer Simul 18(5):1203–1213

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author is supported by the Alzahra university within project 97/1/216. Also, we express our sincere thanks to the anonymous referees for valuable suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimkhani, P., Ordokhani, Y. The bivariate Müntz wavelets composite collocation method for solving space-time-fractional partial differential equations. Comp. Appl. Math. 39, 115 (2020). https://doi.org/10.1007/s40314-020-01141-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01141-7

Keywords

Mathematics Subject Classification

Navigation