Skip to main content
Log in

Three- and Five-Minute Oscillations Modulated by Flares as a Means of Solar Atmosphere Sensing

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

We applied a new approach to measure the time delays of magnetohydrodynamic waves propagating in the solar atmosphere. A small flare in the flare region of the chromosphere served as a modulator of 3‑ and 5-minute oscillations. The oscillation amplitude increased several times, which made it possible to easily fix the wave train formed as it spread upward through the solar atmosphere layers. Such a short-term and well-defined wave train serves as a convenient tool for determining the velocity of propagating magnetohydrodynamic waves, since it avoids the uncertainties in the measurement of the phase shift that arise under ordinary conditions. The advantage of using amplitude modulation from a small flare is that it makes it possible to study the atmosphere of the Sun under conditions close to those in an unperturbed atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. G. Giovanelli, J. W. Harvey, and W. C. Livingston, Solar Phys. 58, 347 (1978).

    Article  ADS  Google Scholar 

  2. M. von Uexkull, F. Kneer, and W. Mattig, Astron. Astrophys. 123, 263 (1983).

    ADS  Google Scholar 

  3. B. W. Lites, Astrophys. J. 277, 874 (1984).

    Article  ADS  Google Scholar 

  4. B. W. Lites and J. H. Thomas, Astrophys. J. 294, 682 (1985).

    Article  ADS  Google Scholar 

  5. N. I. Kobanov, D. Y. Kolobov, and D. V. Makarchik, Solar Phys. 238, 231 (2006).

    Article  ADS  Google Scholar 

  6. R. Centeno, M. Collados, and J. Trujillo Bueno, Astrophys. J. 692, 1211 (2009); arXiv: 0810.3613.

  7. N. I. Kobanov and V. A. Pulyaev, Solar Phys. 268, 329 (2011); arXiv: 1110.1444.

    Article  ADS  Google Scholar 

  8. N. Kobanov, D. Kolobov, A. Kustov, S. Chupin, and A. Chelpanov, Solar Phys. 284, 379 (2013); arXiv: 1302.5164.

    Article  ADS  Google Scholar 

  9. G. B. Gelfreikh, Y. T. Tsap, Y. G. Kopylova, T. B. Goldvarg, Y. A. Nagovitsyn, and L. I. Tsvetkov, Astron. Lett. 30, 489 (2004).

    Article  ADS  Google Scholar 

  10. Y. T. Tsap, A. V. Stepanov, and Y. G. Kopylova, Solar Phys. 291, 3349 (2016).

    Article  ADS  Google Scholar 

  11. A. A. Chelpanov and N. I. Kobanov, Solar Phys. 293, 157 (2018); arXiv: 1810.10153.

  12. N. I. Kobanov, Instrum. Exp. Tech. 44, 524 (2001).

    Article  Google Scholar 

  13. J. Rayrole, Ann. Astrophys. 30, 257 (1967).

    ADS  Google Scholar 

  14. J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, et al., Sol. Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  15. P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, et al., Sol. Phys. 275, 207 (2012).

    Article  ADS  Google Scholar 

  16. R. P. Lin, B. R. Dennis, G. J. Hurford, D. M. Smith, A. Zehnder, P. R. Harvey, D. W. Curtis, D. Pankow, P. Turin, M. Bester, et al., Sol. Phys. 210, 3 (2002).

    Article  ADS  Google Scholar 

  17. V. M. Nakariakov, E. Verwichte, D. Berghmans, and E. Robbrecht, Astron. Astrophys. 362, 1151 (2000).

    ADS  Google Scholar 

  18. E. O’Shea, K. Muglach, and B. Fleck, Astron. Astrophys. 387, 642 (2002).

    Article  ADS  Google Scholar 

  19. N. Kobanov, A. Chelpanov, and V. Pulyaev, J. Atmos. Sol.-Terr. Phys. 173, 50 (2018); arXiv: 1712.10117.

  20. N. I. Kobanov and A. A. Chelpanov, Sol. Phys. 294, 58 (2019); arXiv: 1904.11142.

  21. H. Kwak, J. Chae, D. Song, Y.-H. Kim, E.-K. Lim, and M. S. Madjarska, Astrophys. J. Lett. 821, L30 (2016); arXiv: 1604.02252.

Download references

ACKNOWLEDGMENTS

Spectral data were recorded at the Angara Multiaccess Center facilities at the Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences. We thank the NASA/SDO science team for providing the magnetic field data. We are grateful to the anonymous referee for useful suggestions.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-32-70076 and by the Projects No. II.16.3.2 of Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chelpanov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelpanov, A.A., Kobanov, N.I. Three- and Five-Minute Oscillations Modulated by Flares as a Means of Solar Atmosphere Sensing. Astron. Rep. 64, 363–368 (2020). https://doi.org/10.1134/S1063772920030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920030026

Navigation