Skip to main content
Log in

Dynamic Dark Energy Equation of State (EoS) and Hubble Constant Analysis Using Type Ia Supernovae from Union 2.1 Dataset

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

This paper constraints dynamic dark energy equation of state (EoS) parameters using the type Ia supernovae from Union 2.1 dataset. The paper also discusses the dependency of dynamic dark energy EoS parameters on the chosen or assumed value of the Hubble Constant. To understand the correlation between the Hubble Constant values and measured dynamic dark energy EoS parameters, we used recent surveys being done through various techniques such as cosmic microwave background studies, gravitational waves, baryonic acoustic oscillations and standard candles to set values for different Hubble Constant values as fixed parameters with CPL and WCDM models. Then we applied trust region reflective (TRF) and dog leg (dogbox) algorithms to fit dark energy density parameter and dynamic dark energy EoS parameters. We found a significant negative correlation between the fixed Hubble Constant parameter and measured EoS parameter, \({{w}_{0}}\). Then we used two best fit Hubble Constant values (70 and 69.18474) km s–1 Mpc–1 based on Chi-square test to test more dark energy EoS parameters like: JBP, BA, PADE-I, PADE-II, and LH4 models and compared the results with \(\Lambda \)-CDM with constant \({{w}_{{{\text{de}}}}} = - 1\), WCDM and CPL models. We conclude that flat \(\Lambda \)‑CDM and WCDM models clearly provide best results while using the BIC criteria as it severely penalizes the use of extra parameters. However, the dependency of EoS parameters on Hubble Constant value and the increasing tension in the measurement of Hubble Constant values using different techniques warrants further investigation into looking for optimal dynamic dark energy EoS models to optimally model the relation between the expansion rate and evolution of dark energy in our universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. S. Perlmutter and B. Schmidt, Lect. Notes Phys. 598, 195 (2003).

  4. S. Weinberg, Cosmology (Oxford Univ. Press, Oxford, 2008).

    MATH  Google Scholar 

  5. C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, et al., Astrophys. J. Suppl. Ser. 208, 20 (2013).

    Article  ADS  Google Scholar 

  6. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, et al., Astrophys. J. Suppl. Ser. 208, 19 (2013).

    Article  ADS  Google Scholar 

  7. N. Aghanim, Y. Akrami, M. Ashdown, et al. (Planck Collab.), arXiv: 1807.06209 (2018).

  8. S. Birrer, T. Treu, C. E. Rusu, V. Bonvin, et al., Mon. Not. R. Astron. Soc. 484, 4726 (2018).

    Article  ADS  Google Scholar 

  9. E. Macaulay, R. C. Nichol, D. Bacon, D. Brout, et al., Mon. Not. R. Astron. Soc. 486, 2184 (2019).

    Article  ADS  Google Scholar 

  10. A. G. Riess, C. Stefano, Y. Wenlong, M. M. Lucas, and D. Scolnic, Astrophys. J. 876, 85 (2019).

    Article  ADS  Google Scholar 

  11. A. Liddle, Introduction to Modern Cosmology, 2nd ed. (Wiley, Univ. Sussex, UK, 2003).

  12. N. Jackson, Living Rev. Relativ. 18, 2 (2015).

    Article  ADS  Google Scholar 

  13. S. F. Rahman, Astron. Geophys. 59, 2.39 (2018).

  14. A. Zhai, M. Blanton, A. Slosar, and J. Tinker, Astrophys. J. 850, 183 (2017).

    Article  ADS  Google Scholar 

  15. N. Khosravi, S. Baghram, N. Afshordi, and N. Altamirano, Phys. Rev. D 99, 103526 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. J. Solà, A. Gómez-Valent, and J. de Cruz Pérez, Phys. Dark Universe 25, 100311 (2019).

    Article  ADS  Google Scholar 

  17. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, et al., Nature (London, U.K.) 551, 85 (2017).

    Article  ADS  Google Scholar 

  19. D. Watson, K. D. Denney, M. Vestergaard, and T. M. Davis, Astrophys. J. 740, L49 (2011).

    Article  ADS  Google Scholar 

  20. T. M. Davis, Practical Statistics for Astrophysicists (Harley Wood Winter School, 2012).

    Google Scholar 

  21. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, et al., Astrophys. J. 746, 85 (2012).

    Article  ADS  Google Scholar 

  22. C. Voglis and I. E. Lagaris, in Proceedings of the WSEAS International Conference on Applied Mathematics, Corfu, Greece,2004.

  23. M. A. Branch, T. F. Coleman, and Y. Li, SIAM J. Sci. Comput. 21, 1 (1999).

    Article  MathSciNet  Google Scholar 

  24. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Series in Operations Research and Financial Engineering (Springer, New York, 2006).

  25. R. Amanullah, C. Lidman, D. Rubin, G. Aldering, et al., Astrophys. J. 716, 712 (2010).

    Article  ADS  Google Scholar 

  26. E. Jones, E. Oliphant, and P. Peterson, http://www.scipy.org/. Accessed 2001.

  27. E. M. Barboza, Jr. and J. S. Alcaniz, Phys. Rev. B 666, 415 (2008).

    Google Scholar 

  28. M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001).

    Article  ADS  Google Scholar 

  29. E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).

    Article  ADS  Google Scholar 

  30. H. K. Jassal, J. S. Bagla, and T. Padmanabhan, Mon. Not. R. Astron. Soc. 356, L11 (2005).

    Article  ADS  Google Scholar 

  31. H. K. Jassal, J. S. Bagla, and T. Padmanabhan, Phys. Rev. D 72, 103503 (2005).

    Article  ADS  Google Scholar 

  32. E. V. Linder and D. Huterer, Phys. Rev. D 72, 043509 (2005).

    Article  ADS  Google Scholar 

  33. H. Wei, X. P. Yan, and Y. N. Zhou, J. Cosmol. Astropart. Phys. 1401, 045 (2014).

  34. T. M. Davis and D. Parkinson, in Handbook of Supernovae, Ed. by A. Alsabti and P. Murdin (Springer, New York, 2016).

    Google Scholar 

  35. W. D. Heacox, The Expanding Universe: A Primer on Relativistic Cosmology (Cambridge Univ. Press, UK, 2015).

    Book  Google Scholar 

  36. A. Vikman, Phys. Rev. D 71, 023515 (2005).

    Article  ADS  Google Scholar 

  37. J. S. Farnes, Astron. Astrophys. 620, A92 (2018).

    Article  ADS  Google Scholar 

  38. A. R. Sandage, Astrophys. J. 127, 513 (1958).

    Article  ADS  Google Scholar 

  39. W. L. Freedman, Nat. Astron. 1, 0121 (2017).

  40. R. Wojtak and A. Agnello, Mon. Not. R. Astron. Soc. 486, 5046 (2019).

    Article  ADS  Google Scholar 

  41. K. Vattis, S. M. Koushiappas, and L. Abraham, Phys. Rev. D 99, 121302 (2019).

    Article  ADS  Google Scholar 

  42. J. Soltis, A. Farahi, D. Huterer, and C. M. Liberato, Phys. Rev. Lett. 122, 091301 (2019).

    Article  ADS  Google Scholar 

  43. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, et al., Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  44. A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, et al., Astrophys. J. 826, 56 (2016).

    Article  ADS  Google Scholar 

  45. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, Singapore, 2011).

    Book  MATH  Google Scholar 

  46. P. A. R. Ade, N. Aghanim, M. I. R. Alves, et al. (Planck Collab.), Astron. Astrophys. 571, A1 (2014).

    Article  Google Scholar 

  47. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck Collab.), Astron. Astrophys. 571, A23 (2014).

    Article  Google Scholar 

  48. R. Adam, P. A. R. Ade, N. Aghanim, et al. (Planck Collab.), Astron. Astrophys. 594, A1 (2016).

    Article  Google Scholar 

  49. J. N. Grieb, S. Ariel, and S. Salazar-Albornozr, Mon. Not. R. Astron. Soc. 467, 2085 (2017).

    ADS  Google Scholar 

  50. A. G. Riess, L. Strolger, S. Casertano, H. C. Ferguson, et al., Astrophys. J. 659, 98 (2007).

    Article  ADS  Google Scholar 

  51. A. G. Riess, S. A. Rodney, D. M. Scolnic, D. L. Shafer, et al., Astrophys. J. 853, 126 (2018).

    Article  ADS  Google Scholar 

  52. A. G. Riess, S. Casertano, Y. Wenlong, L. Macri, et al., Astrophys. J. 861, 126 (2018).

    Article  ADS  Google Scholar 

  53. G. Pietrzynski, D. Graczyk, A. Gallenne, W. Gieren, et al., Nature (London, U.K.) 567, 200 (2019).

    Article  ADS  Google Scholar 

  54. G. Risaliti and E. Lusso, Nat. Astron. 3, 272 (2019).

    Article  ADS  Google Scholar 

  55. D. Scolnic, S. Perlmutter, G. Aldering, D. Brout, et al., arXiv: 1903.05128 (2019).

  56. W. M. Wood-Vasey, G. Miknaitis, C. W. Stubbs, S. Jha, et al., Astrophys. J. 666, 694 (2007).

    Article  ADS  Google Scholar 

  57. T. M. Davis, E. Mörtsell, J. Sollerman, A. C. Becker, et al., Astrophys. J. 666, 716 (2007).

    Article  ADS  Google Scholar 

  58. R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).

    Article  ADS  Google Scholar 

  59. N. Afshordi, Phys. Rev. D 70, 083536 (2004).

    Article  ADS  Google Scholar 

  60. S. F. Rahman and M. J. Iqbal, Eur. Phys. J. Plus 134, 302 (2019).

    Article  Google Scholar 

  61. G. E. Schwarz, Ann. Stat. 6, 461 (1978).

    Article  Google Scholar 

  62. F. Arevalo, A. Cid, and J. Moya, Eur. Phys. J. C 77, 565 (2017).

    Article  ADS  Google Scholar 

  63. A. R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007).

    Article  ADS  Google Scholar 

  64. R. E. Kass and A. E. Raftery, J. Am. Stat. Assoc. 90, 773 (1995).

    Article  Google Scholar 

  65. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019).

    Article  ADS  Google Scholar 

  66. B. Liu, Z. Li, and Z. Zhu, Mon. Not. R. Astron. Soc. 487, 1980 (2019).

    Article  ADS  Google Scholar 

  67. B. F. Schutz, Class. Quantum Grav. 16, A131 (1999).

    Article  ADS  Google Scholar 

  68. M. Jarvis, D. Bacon, C. Blake, M. L. Brown, et al., arXiv: 1501.03825 (2014).

  69. H. Chen, M. Fishbach, and D. E. Holz, Nature (London, U.K.) 562, 545 (2018).

    Article  ADS  Google Scholar 

  70. M. Keiichi and T. Yukikatsu, Int. J. Mod. Phys. D 25, 1630024 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Jeremy Mould, Emeritus Professor at Swinburne University of Technology for reviewing this work and providing useful suggestions during the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.F. Dynamic Dark Energy Equation of State (EoS) and Hubble Constant Analysis Using Type Ia Supernovae from Union 2.1 Dataset. Astron. Rep. 64, 281–294 (2020). https://doi.org/10.1134/S1063772920040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920040046

Navigation