Skip to main content
Log in

Galaxies with Declining Rotation Curves

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A sample of 22 spiral galaxies compiled from published data is studied. The galaxy rotation curves pass through a maximum distance of more than ~1 kpc from the center with a subsequent decrease in the rotation velocity. The galaxy position in the Tully–Fisher (TF) and baryonic Tully–Fisher (BTF) diagrams show that the maximum rotation velocities are located on the same sequence with other galaxies, while the velocities at the disk periphery for some galaxies are significantly lower than the expected values for a given mass or luminosity. Thus, the decrease in the rotation curve can be associated with a reduced contribution of the dark halo to the rotation velocity. For seven galaxies with the longest rotation curves, the disk mass was estimated to be with the dark halo (Newtonian model) and without the halo (modified Newtonian dynamics (MOND) model). In four of the galaxies, the MOND model encounters difficulties in interpreting the rotation curve: in order to be consistent with the observations, the model parameter \({{a}_{0}}\) should differ significantly from the expected value \({{a}_{0}} \sim {{10}^{{ - 8}}}\) cm/s2, while the disk mass estimate exceeds the value based on IR photometry and maximum disk model. The conflict with MOND is the greatest for NGC 157.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. http://leda.univ-lyon1.fr

REFERENCES

  1. Y. Sofue, Y. Tutui, M. Honma, A. Tomita, T. Takamiya, J. Koda, and Y. Takeda, Astrophys. J. 523, 136 (1999).

    Article  ADS  Google Scholar 

  2. M. A. W. Verheijen, Astrophys. J. 563, 694 (2001).

    Article  ADS  Google Scholar 

  3. A. A. Ponomareva, M. A. W. Verheijen, and A. Bosma, Mon. Not. R. Astron. Soc. 463, 4052 (2016).

    Article  ADS  Google Scholar 

  4. F. Lelli, S. S. McGaugh, and J. M. Schombert, Astron. J. 152, 157 (2016).

    Article  ADS  Google Scholar 

  5. E. Noordermeer, J. M. van der Hulst, R. Sancisi, R. S. Swaters, and T. S. van Albada, Mon. Not. R. Astron. Soc. 376, 1513 (2007).

    Article  ADS  Google Scholar 

  6. M. Persic, P. Salucci, and F. Stel, Mon. Not. R. Astron. Soc. 281, 27 (1996).

    Article  ADS  Google Scholar 

  7. K. G. Begeman, Astron. Astrophys. 223, 47 (1989).

    ADS  Google Scholar 

  8. M. Milgrom, Astrophys. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  9. B. Famaey and S. S. McGaugh, Liv. Rev. Relativ. 15, 10 (2012).

    Article  ADS  Google Scholar 

  10. S. S. McGaugh, Astron. J. 143, 40 (2012).

    Article  ADS  Google Scholar 

  11. A. A. Ponomareva, M. A. W. Verheijen, E. Papastergis, A. Bosma, and R. F. Peletier, Mon. Not. R. Astron. Soc. 474, 4366 (2018).

    Article  ADS  Google Scholar 

  12. R. Durazo, X. Hernandez, B. Cervantes Sodi, and S. F. Sanchez, Astrrophys. J. 863, 107 (2018).

    Article  ADS  Google Scholar 

  13. K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. R. Astron. Soc. 249, 523 (1991).

    Article  ADS  Google Scholar 

  14. N. Hashim, M. de Laurentis, Z. Zainal Abidin, and P. Salucci, arXiv:1407.0379 [astro-ph.GA] (2014).

  15. D. M. Lucero, C. Carignan, K. M. Hess, B.S. Frank, T. H. Randriamampandry, S. Goedhart, and S. S. Pas-smoor, Am. Astron. Soc. Meeting Abstracts 223, 138.06 (2014).

  16. R. A. Swaters, R. H. Sanders, and S. S. McGaugh, A-strophys. J. 718, 380 (2010).

    ADS  Google Scholar 

  17. W. J. G. de Blok, F. Walter, E. Brinks, C. Trachternach, S.-H. Oh, and R. C. Kennicutt, Astron. J. 136, 2648 (2008).

    Article  ADS  Google Scholar 

  18. S. D. Ryder, A. V. Zasov, V. J. McIntyre, W. Walsh, and O. K. Sil’chenko, Mon. Not. R. Astron. Soc. 293, 411 (1998).

    Article  ADS  Google Scholar 

  19. A. M. Fridman, O. V. Khoruzhii, V. V. Lyakhovich, O. K. Sil’chenko, A. V. Zasov, V. L. Afanasiev, S. N. Dodonov, and J. Boulesteix, Astron. Astrophys. 371, 538 (2001).

    Article  ADS  Google Scholar 

  20. S. A. Kassin, R. S. de Jong, and R. W. Pogge, Astrophys. J. Suppl. 162, 80 (2006).

    Article  ADS  Google Scholar 

  21. I. A. Yegorova, A. Babic, P. Salucci, K. Spekkens, and A. Pizzella, Astron. Astrophys. Trans. 27, 335 (2012).

    ADS  Google Scholar 

  22. B. Epinat, P. Amram, M. Marcelin, C. Balkowski, et al., Mon. Not. R. Astron. Soc. 388, 500 (2008).

    Article  ADS  Google Scholar 

  23. S. Courteau, arXiv:astro-ph/9903297v1 (1999).

  24. T. P. K. Martinsson, M. A. W. Verheijen, K. B. Westfall, M. A. Bershady, D. R. Andersen, and R. A. Swaters, Astron. Astrophys. 557, A131 (2013).

    Article  ADS  Google Scholar 

  25. J. Méndez-Abreu, J. A. L. Aguerri, E. M. Corsini, and E. Simonneau, Astron. Astrophys. 478, 353 (2008).

    Article  ADS  Google Scholar 

  26. M. Spano, M. Marcelin, P. Amram, C. Carignan, B. Epinat, and O. Hernandez, Mon. Not. R. Astron. Soc. 383, 297 (2008).

    Article  ADS  Google Scholar 

  27. R. Bottema and M. A. W. Verheijen, Astron. Astrophys. 388, 793 (2002).

    Article  ADS  Google Scholar 

  28. T. H. Jarrett, T. Chester, R. Cutri, S. E. Schneider, and J. P. Huchra, Astron. J. 125, 525 (2003).

    Article  ADS  Google Scholar 

  29. S. A. Kassin, R. S. de Jong, and B. J. Weiner, Astrophys. J. 643, 804 (2006).

    Article  ADS  Google Scholar 

  30. O. Tiret and F. Combes, Astron. Astrophys. 496, 659 (2009).

    Article  ADS  Google Scholar 

  31. H. Salo, E. Laurikainen, J. Laine, S. Comerón, et al., Astrophys. J. Suppl. 219, 4 (2015).

    Article  Google Scholar 

  32. D. Makarov, P. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, Astron. Astrophys. 570, A13 (2014).

    Article  ADS  Google Scholar 

  33. A. Schruba, A. K. Leroy, F. Walter, F. Bigiel, et al., A-stron. J. 142, 37 (2011).

    Article  ADS  Google Scholar 

  34. K. Yim, and J. M. van der Hulst, Mon. Not. R. Astron. Soc. 463, 2092 (2016).

    Article  ADS  Google Scholar 

  35. D. M. Elmegreen and B. G. Elmegreen, Astrophys. J. 314, 3 (1987).

    Article  ADS  Google Scholar 

  36. D. B. Fisher and N. Drory, Astrophys. J. 716, 942 (2010).

    Article  ADS  Google Scholar 

  37. V. L. Afanasiev and O. K. Sil’chenko, Astron. J. 117, 1725 (1999).

    Article  ADS  Google Scholar 

  38. V. E. Karachentseva, Soobshch. Spets. Astrofiz. Observ. 8, 3 (1973).

    ADS  Google Scholar 

  39. M. S. Yun, P. T. P. Ho, and K. Y. Lo, Nature (London, U.K.) 372, 530 (1994).

    Article  ADS  Google Scholar 

  40. G. Battaglia, F. Fraternali, T. Oosterloo, and R. Sancisi, Astron. Astrophys. 447, 49 (2006).

    Article  ADS  Google Scholar 

  41. P. Fouque, E. Gourgoulhon, P. Chamaraux, and G. Paturel, Astron. Astrophys. Suppl. Ser. 93, 211 (1992).

    ADS  Google Scholar 

  42. S. Torres-Flores, B. Epinat, P. Amram, H. Plana, and C. Mendes de Oliveira, Mon. Not. R. Astron. Soc. 416, 1936 (2011).

    Article  ADS  Google Scholar 

  43. R. S. de Jong, Astron. Astrophys. 313, 377 (1996).

    ADS  Google Scholar 

  44. M. A. Norris, G. van de Ven, E. Schinnerer, R. A. Crain, et al., Astrrophys. J. 832, 198 (2016).

    Article  ADS  Google Scholar 

  45. A. V. Zasov and N. A. Zaitseva, Astron. Lett. 43, 439 (2017).

    Article  ADS  Google Scholar 

  46. J. Binney and M. Merrifield, Galactic Astronomy (Princeton Univ. Press, Princeton, 1998).

    Google Scholar 

  47. S. S. McGaugh and J. M. Schombert, Astron. J. 148, 77 (2014).

    Article  ADS  Google Scholar 

  48. T. Into and L. Portinari, Mon. Not. R. Astron. Soc. 430, 2715 (2013).

    Article  ADS  Google Scholar 

  49. S.-H. Oh, W. J. G. de Blok, F. Walter, E. Brinks, and R. C. Kennicutt, Astron. J. 136, 2761 (2008).

    Article  ADS  Google Scholar 

  50. T. S. van Albada, J. N. Bahcall, K. Begeman, and R. Sancisi, Astrophys. J. 295, 305 (1985).

    Article  ADS  Google Scholar 

  51. A. Cattaneo, J. Blaizot, J. E. G. Devriendt, G. A. Mamon, et al., Mon. Not. R. Astron. Soc. 471, 1401 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the HyperLeda database [32].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. I. Zobnina or A. V. Zasov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobnina, D.I., Zasov, A.V. Galaxies with Declining Rotation Curves. Astron. Rep. 64, 295–309 (2020). https://doi.org/10.1134/S1063772920050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920050054

Navigation