Skip to main content
Log in

Apex and Kinematical Structure of Castor and Ursa Major Moving Stellar Groups

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Based on space velocity components UVW and using a recent dataset for Castor and Ursa Major moving groups, we compute the apex position with two methods. Classical convergent procedures give (AcpDcp) = (80\(_{.}^{\circ}\)7830, –17\(_{.}^{\circ}\)2598; Castor, 298\(_{.}^{\circ}\)334, –34\(_{.}^{\circ}\)6405; UMa) for Castor and Ursa Major groups. According to the AD-map method we deduce the apex position (A0, D0) = (79\(_{.}^{\circ}\)5514, –17\(_{.}^{\circ}\)3948; Castor, 304\(_{.}^{\circ}\)767, ‒35\(_{.}^{\circ}\)2045; UMa) for these two objects. These results are in good agreement with other published coordinated. Also, we calculate all parameters with a model of stream velocity ellipsoidal motions, which reveals inner kinematical structure. Finally, we consider the intrinsic variations considered with late-type moving groups (streams) for the longitude of the vertex versus temperature (spectral types).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A+A/623/A72/hipgpma

REFERENCES

  1. O. J. Eggen, in Galactic and Solar System Optical Astrometry, Ed. by L. V. Morrison and G. Gilmore (Cambridge Univ. Press, Cambridge, 1994), p. 191.

    Google Scholar 

  2. A. Klutsch, F. R. Freire, P. Guillout, A. Frasca, E. Marilli, and D. Montes, Astron. Astrophys. 567, A52 (2014).

    Article  Google Scholar 

  3. O. J. Eggen, Mon. Not. R. Astron. Soc. 118, 65 (1958).

    Article  ADS  Google Scholar 

  4. O. J. Eggen, Mon. Not. R. Astron. Soc. 120, 540 (1960).

    Article  ADS  Google Scholar 

  5. O. J. Eggen, Astron. J. 89, 1350 (1984).

    Article  ADS  Google Scholar 

  6. O. J. Eggen, Astron. J. 104, 1482 (1992).

    Article  ADS  Google Scholar 

  7. O. J. Eggen, Astron. J. 111, 1615 (1996).

    Article  ADS  Google Scholar 

  8. O. J. Eggen, Astron. J. 116, 284 (1998).

    Article  ADS  Google Scholar 

  9. O. J. Eggen, Mon. Not. R. Astron. Soc. 120, 563 (1998).

    Article  ADS  Google Scholar 

  10. O. J. Eggen, Astron. J. 88, 642 (1983).

    Article  ADS  Google Scholar 

  11. O. J. Eggen, Astron. J. 104, 1493 (1992).

    Article  ADS  Google Scholar 

  12. O. J. Eggen, Astron. J. 116, 782 (1998).

    Article  ADS  Google Scholar 

  13. D. R. Soderblom and M. Mayor, Astron. J. 105, 226 (1993).

    Article  ADS  Google Scholar 

  14. D. R. Soderblom and M. Mayor, Astrophys. J. 402, L5 (1993).

    Article  ADS  Google Scholar 

  15. W. H. Elsanhoury, E. S. Postnikova, N. V. Chupina, S. V. Vereshchagin, P. Sariya Devesh, R. K. S. Yadav, and I. Jiang, Astrophys. Space Sci. 363, 58 (2018).

    Article  ADS  Google Scholar 

  16. D. Montes, J. López-Santiago, M. C. Gálvez, M. J. Fernández-Figueroa, E. de Castro, and M. Cornide, Mon. Not. R. Astron. Soc. 328, 45 (2001).

    Article  ADS  Google Scholar 

  17. B. Zuckerman, L. Vican, I. Song, and A. Schneider, Astrophys. J. 778, 5 (2013).

    Article  ADS  Google Scholar 

  18. J. King, A. Villareal, D. Soderblom, A. Gulliver, and S. Adelman, Astron. J. 125, 1980 (2003).

    Article  ADS  Google Scholar 

  19. B. Zuckerman, M. S. Bessell, I. Song, and S. Kim, Astrophys. J. Lett. 649, L115 (2006).

    Article  ADS  Google Scholar 

  20. H. M. Tabernero, D. Montes, J. I. González Hernández, and M. Ammlervon Eif, Astron. Astrophys. 597, A33 (2017).

    Article  ADS  Google Scholar 

  21. P. Kervella, F. Arenou, F. Mignard, and F. Thévenin, Astron. Astrophys. 623, A72 (2019).

    Article  ADS  Google Scholar 

  22. N. V. Chupina, V. G. Reva, and S. V. Vereshchagin, Astron. Astrophys. 371, 115 (2001).

    Article  ADS  Google Scholar 

  23. N. V. Chupina, V. G. Reva, and S. V. Vereshchagin, Astron. Astrophys. 451, 909 (2006).

    Article  ADS  Google Scholar 

  24. F. van Leeuwen, Astrophys. Space Sci. Lib. 350 (2007).

  25. T. Prusti et al. (Gaia Collab.), Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  26. A. G. A. Brown et al. (Gaia Collab.), Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  27. A. Ginsburg, M. Parikh, J. Woillez, et al., Astrophys. Source Code Library record ascl:1708.004 (2017).

  28. A. M. Price-Whelam et al. (Astropy Collab.), Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  29. F. Ochsenbein, P. Bauer, and J. Marcout, Astron. Astrophys. Suppl. 143, 23 (2000).

    ADS  Google Scholar 

  30. J. A. Caballero, Astron. Astrophys. 514, A98 (2010).

    Article  ADS  Google Scholar 

  31. S. V. Vereshchagin and N. V. Chupina, Baltic Astron. 24, 421 (2015).

    ADS  Google Scholar 

  32. G. Dopcke, G. F. Porto de Mello, and C. Sneden, Mon. Not. R. Astron. Soc. 485, 4375 (2019).

    Article  ADS  Google Scholar 

  33. B. D. Mason, G. L. Wycoff, W. I. Hartkopf, G. G. Douglass, and C. E. Worley, Astrophys. J. 122, 3466 (2001).

    ADS  Google Scholar 

  34. A. Vigan, M. Bonavita, B. Biller, et al., Astron. Astrophys. 603, 3 (2017).

    Article  Google Scholar 

  35. D. Mihalas and J. Binney, Galactic Astronomy. Structure and Kinematics, 2nd ed. (W. H. Freeman, San Francisco, 1981).

    Google Scholar 

  36. W. H. Elsanhoury, M. I. Nouh, and H. I. Abdel-Rahman, Rev. Mex. Astron. Astrofis. 51, 197 (2015).

    ADS  Google Scholar 

  37. J. H. J. de Bruijne, Mon. Not. R. Astron. Soc. 306, 381 (1999).

    Article  ADS  Google Scholar 

  38. P. A. B. Galli, R. Teixeira, C. Ducourant, C. Bertout, and P. Benevides-Soares, Astron. Astrophys. 538, A23 (2012).

    Article  ADS  Google Scholar 

  39. W. H. Elsanhoury, A. A. Haroon, N. V. Chupina, S. V. Vereshchagin, P. Sariya Devesh, R. K. S. Yadav, and I.-G. Jiang, New Astron. 49, 32 (2016).

    Article  ADS  Google Scholar 

  40. W. H. Elsanhoury, M. A. Sharaf, M. I. Nouh, and A. S. Saad, Open Astron. J. 6, 1 (2013).

    Article  Google Scholar 

  41. J.-C. Liu, Z. Zhu, and B. Hu, Astron. Astrophys. 536, A102 (2011).

    Article  ADS  Google Scholar 

  42. M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131, 1163 (2006).

    Article  ADS  Google Scholar 

  43. H. D. Perottoni, C. Martin, H. J. Newberg, et al., Mon. Not. R. Astron. Soc. 486, 843 (2019).

    Article  ADS  Google Scholar 

  44. H.-F. Wang, Y. Huang, J. L. Carlin, et al., arXiv: 1905.11944 (2019).

  45. S. Pearson, T. K. Starkenburg, K. V. Johnston, B. F. Williams, and R. A. Ibata, arXiv: 1906.03264 (2019).

  46. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973).

    Google Scholar 

  47. P. Ramya, B. E. Reddy, and D. L. Lambert, Mon. Not. R. Astron. Soc. 484, 125 (2019).

    Article  ADS  Google Scholar 

  48. C. Torres, G. Quast, C. Melo, and M. Sterzik, in Handbook of Star Forming Regions, Vol. 2: The Southern Sky, Ed. by B. Reipurth, Vol. 5 of ASP Monograph Publ. (ASP, San Francisco, CA, 2008), p. 757.

  49. The Spiral Structure of Our Galaxy, Proceedings of the IAU Symposium No. 38, Ed. by W. Becker and G. Contopoulos (Reidel, Dordrecht, 1970).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would to thanks the referee of this paper for many useful comments which highly improved the level of this paper. This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France. The preparation of this work has made extensive use of NASA’s Astrophysics Data System Bibliographic Services. This work has made use of data from the European Space Agency (ESA) mission Gaia https://www.cosmos.esa.int/gaia, the data from which were processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multi-Lateral Agreement (MLA). The Gaia archive website is https://archives.esac.esa.int/gaia.

Funding

The author gratefully acknowledges the approval and the support of this research study by the grant number SAR‑2018-3-9-F-7597 from the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Elsanhoury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsanhoury, W.H. Apex and Kinematical Structure of Castor and Ursa Major Moving Stellar Groups. Astron. Rep. 64, 199–210 (2020). https://doi.org/10.1134/S1063772920030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920030038

Navigation