Skip to main content
Log in

Coronal Mass Ejection Effect on Envelopes of Hot Jupiters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  2. M. Mayor and D. Queloz, Nature (London, U.K.) 378, 355 (1995).

    Article  ADS  Google Scholar 

  3. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  4. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature (London, U.K.) 463, 1054 (2010).

    Article  ADS  Google Scholar 

  5. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature (London, U.K.) 422, 143 (2003).

    Article  ADS  Google Scholar 

  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  7. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    Article  ADS  Google Scholar 

  8. A. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  9. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  10. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  11. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  12. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  13. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  14. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    Article  ADS  Google Scholar 

  15. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  16. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  17. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    Article  ADS  Google Scholar 

  18. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).

    Article  ADS  Google Scholar 

  19. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    Article  ADS  Google Scholar 

  20. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 62, 648 (2018).

    Article  ADS  Google Scholar 

  21. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 481, 5315 (2018).

    Article  ADS  Google Scholar 

  22. A. A. Cherenkov, I. F. Shaikhislamov, D. V. Bisikalo, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 63, 94 (2019).

    Article  ADS  Google Scholar 

  23. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    Article  ADS  Google Scholar 

  24. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).

    Article  ADS  Google Scholar 

  25. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    Article  ADS  Google Scholar 

  26. W.-H. Ip, A. Kopp, and J.-H. Hu, Astrophys. J. 602, L53 (2004).

    Article  ADS  Google Scholar 

  27. P. V. Kaigorodov, E. A. Ilyina, and D. V. Bisikalo, A-stron. Rep. 63, 365 (2019).

    Article  ADS  Google Scholar 

  28. W. M. Farrell, J. S. Halekas, R. M. Killen, G. T. Delory, et al., J. Geophys. Res. Planets 117, E00K04 (2012).

    Article  Google Scholar 

  29. C. Möstl, K. Amla, J. R. Hall, P. C. Liewer, et al., Astrophys. J. 787, 119 (2014).

    Article  ADS  Google Scholar 

  30. Y. D. Liu, J. D. Richardson, C. Wang, and J. G. Luhmann, Astrophys. J. 788, L28 (2014).

    Article  ADS  Google Scholar 

  31. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).

    Article  ADS  Google Scholar 

  32. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  33. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science (Washington, DC, U. S.) 346, 981 (2014).

    Article  ADS  Google Scholar 

  34. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

  35. S. Czesla, P. C. Schneider, M. Salz, T. Klocova, T. O. B. Schmidt, and J. H. M. M. Schmitt, Astron. Astrophys. 629, A5 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using capacities of the collective usage center “Complex for modeling of the data of mega-class research equipment” of the National Research Center “Kurchatov Institute” (http://ckp.nrcki.ru/) and Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Funding

This study was supported by Russian Foundation for Basic Research (contract № 18-02-00178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. & Kaygorodov, P.V. Coronal Mass Ejection Effect on Envelopes of Hot Jupiters. Astron. Rep. 64, 159–167 (2020). https://doi.org/10.1134/S1063772920020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920020055

Navigation