Skip to main content
Log in

Multiscale Analysis of the Instantaneous Eccentricity Oscillations of the Planets of the Solar System from 13 000 BC to 17 000 AD

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The high-resolution Jet Propulsion Laboratory DE431 and DE432 planetary ephemeris are used to evaluate the instantaneous eccentricity functions of the orbits of the planets of the solar system from 13 000 BC to 17 000 AD at different time scales. Spectral analyses are performed to determine the frequencies and the amplitudes of the detected perturbations from 0.1-year to 10 000-year periods. Taken as contiguous pairs (Mercury-Venus, Earth-Mars, Jupiter-Saturn, and Uranus-Neptune), we found anti-phase patterns between contiguous planets at specific time scales (30 000 years): namely, the eccentricity of one planet increases while the other decreases. Venus and Earth instead appear in phase. However, on shorter time scales the phase coupling becomes more complex and irregular. Yet, Jupiter and Saturn present a π/2 phase coupling at the 1000-year scale. Periodogram analysis of the planetary eccentricity functions shows several fast fluctuations whose magnitudes indicate the strength of their mutual interactions where the Jovian planets significantly perturb the orbits of the inner planets. Besides, the wavelet power spectrum and wavelet squared coherence spectrum analyses are adopted to examine the relationships in time-frequency space between the eccentricity functions of each couple of terrestrial and Jovian planets. The analysis reveals the complexity and the evolution of the gravitational couplings perturbing each other planetary orbits. In some cases and for specific frequencies, this analysis technique also led to the discovery that the coherence phase can rotate clockwise or anticlockwise. The eccentricity function of the orbit of Jupiter presents large oscillations with periods of about 60 and 900- 960 years, mostly due to the interaction with Saturn. These oscillations also correspond to oscillations found in several geophysical records. The eccentricity functions of Uranus and Neptune are characterized by a large 4300-year oscillation. The eccentricity function of Pluto is characterized by a large nearly 20 000-year modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abe-Ouchi, F. Saito, K. Kawamura, M. E. Raymo, J. Okuno, K. Takahashi, and H. Blatter, Insolation-driven 100 000-year glacial cycles and hysteresis of ice-sheet volume, Nature 500 (7461), 190 (2013).

    Article  ADS  Google Scholar 

  2. E. Bringuier, Eccentricity as a vector: A concise derivation of the orbit equation in celestial mechanics, Eur. J. Phys. 25, 369 (2004).

    Article  MathSciNet  Google Scholar 

  3. D. Brouwer and A. J. J. Van Woerkom, The Secular Variation of the Orbital Elements of the Principal Planets, Astronomical Papers 13, 81 (1950).

    Google Scholar 

  4. E. I. Butikov, Comment on “Eccentricity as a vector,” Eur. J. Phys. 25, L41–3 (2004).

    Article  MathSciNet  Google Scholar 

  5. S. F. Dermott and P. D. Nicholson, Masses of the satellites of Uranus, Nature 319, 115 (1986).

    Article  ADS  Google Scholar 

  6. M. Elkibbi and J. A. Rial, An outsider's review of the astronomical theory of the climate: is the eccentricity-driven insolation the main driver of the ice ages?, Earth-Science Reviews 56, 161 (2001).

    Article  ADS  Google Scholar 

  7. D. V. Etz, Conjunctions of Jupiter and Saturn, Journal of the Royal Astronomical Society of Canada 94, 174 (2000).

    ADS  Google Scholar 

  8. W. M. Folkner, Planetary Ephemeris DE432, Jet Propulsion Laboratory Memorandum IOM392R-14-003 (2014).

    Google Scholar 

  9. W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kuchynka, The Planetary and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196 (2014). http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf

    Google Scholar 

  10. A. B. Geddes and D. G. King-Hele, Equations for Mirror Symmetries Among the Distances of the Planets, Quarterly Journal of the Royal Astronomical Society 24, 10 (1983).

    ADS  Google Scholar 

  11. A. Grinsted, J. C. Moore, and S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Process. Geophys. 11, 561566 (2004).

    Article  Google Scholar 

  12. J. D. Hays, J. Imbrie, N. J. Shackleton, Variations in the Earth's orbit: Pacemaker of the ice ages, Science 194, 1121 (1976).

    Article  ADS  Google Scholar 

  13. J. Kepler, De Stella Nova in Pede Serpentarii, Typis Pauli Sessii, Pragae, 1606.

    Google Scholar 

  14. R. A. Kerr, A variable sun paces millennial climate, Science 294, 1431 (2001).

    Article  Google Scholar 

  15. K. V. Kholshevnikov and E. D. Kuznetsov, Review of the Works on the Orbital Evolution of Solar System Major Planets, Solar System Research 41 (4), 265 (2007).

    Article  ADS  Google Scholar 

  16. J. Laskar, F. Joutel, and F. Boudin, Orbital, preces-sional and insolation quantities for the Earth from -20 to +10 Myr, Astron. Astrophys. 270, 522 (1993).

    ADS  Google Scholar 

  17. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, and B. Levrard, A long term numerical solution for the insolation quantities of the Earth, Astron. Astrophys. 428, 261 (2004a).

    Article  ADS  Google Scholar 

  18. J. Laskar, A. Correia, M. Gastineau, F. Joutel, B. Levrard, and P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus 170 (2), 343 (2004b).

    Article  ADS  Google Scholar 

  19. J. Laskar, A. Fienga, M. Gastineau, and H. Manche, A new orbital solution for the long-term motion of the Earth, Astron. Astrophys. 532, A89 (2011).

    Article  ADS  Google Scholar 

  20. P. Lenz, M. Breger, Period04 User Guide, CoAst 146, 53 (2015).

    ADS  Google Scholar 

  21. E. O. Lovett, The Great Inequality of Jupiter and Saturn. Astronomical Journal 351, 113 (1895).

    Article  ADS  Google Scholar 

  22. A. Ma'shar, On the Great Conjunctions (K Ya-mamoto and C. Burnett, Trans, Brill, 2000), p. 886.

    Google Scholar 

  23. M. Milankovic, Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen, Handbuch der Klimatologie, Band I, Teil A (Berlin, Verlag von Gebrüder Borntraeger, 1930).

    Google Scholar 

  24. C. E. Mungan, Another comment on “Eccentricity as a vector,” Eur. J. Phys. 26, L7 (2005).

    Article  Google Scholar 

  25. C. Murray and S. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  26. U. Neff, S. J. Burns, A. Mangini, M. Mudelsee, D. Fleitmann, and A. Matter, Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago, Nature 411, 290 (2001).

    Article  ADS  Google Scholar 

  27. M. G. Ogurtsov, Y. A. Nagovitsyn, G. E. Kocharov, and H. Jungner, Long-period cycles of the Suns activity recorded in direct solar data and proxies, Sol. Phys. 211, 371 (2002).

    Article  ADS  Google Scholar 

  28. G. Roe, In defense of Milankovitch, Geophysical Research Letters 33, L24703 (2006).

    Article  ADS  Google Scholar 

  29. N. Scafetta, A shared frequency set between the historical mid-latitude aurora records and the global surface temperature, J. Atmos. Sol.-Terr. Phys. 74, 145 (2012).

    Article  ADS  Google Scholar 

  30. N. Scafetta, Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles, Earth-Science Reviews 126, 321 (2013).

    Article  ADS  Google Scholar 

  31. N. Scafetta, The complex planetary synchronization structure of the solar system, Pattern Recogn. Phys. 2, 1 (2014).

    Article  ADS  Google Scholar 

  32. N. Scafetta, F. Milani, A. Bianchini, and S. Ortolani, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene, Earth-Science Reviews 162, 24 (2016).

    Article  ADS  Google Scholar 

  33. N. Scafetta and R. C. Willson, Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth-Jupiter conjunction cycle, Astrophys. Space Sci. 348, 25 (2013a).

    Article  ADS  Google Scholar 

  34. N. Scafetta and R. C. Willson, Planetary harmonics in the historical Hungarian aurora record (1523-1960), Planetary and Space Science 78, 38 (2013b).

    Article  ADS  Google Scholar 

  35. C. Wilson, The Great Inequality of Jupiter and Saturn: from Kepler to Laplace, Archive for History of Exact Sciences 33, 15 (1985).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Scafetta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scafetta, N., Milani, F. & Bianchini, A. Multiscale Analysis of the Instantaneous Eccentricity Oscillations of the Planets of the Solar System from 13 000 BC to 17 000 AD. Astron. Lett. 45, 778–790 (2019). https://doi.org/10.1134/S1063773719110094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719110094

Keywords

Navigation