Skip to main content
Log in

Influence of Large-Scale Perturbations in Circumstellar Disks on the Linear Polarization Parameters of UX Ori Stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The influence of large-scale perturbations in a circumstellar disk on the linear polarization of UX Ori stars is considered. We show that the position angle of the intrinsic linear polarization of a star surrounded by a geometrically thin flared disk cannot change significantly after the passage through the photometric minimum due to perturbations in the disk. In contrast, perturbations in a disk puffed up in the dust sublimation zone can give deflections of the plane of linear polarization of the system’s radiation up to 60°. This model allows the unusual changes in linear polarization observed in UX Ori and WW Vul after prolonged photometric minima to be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D’Alessio, J. Cantö, N. Calvet, and S. Lizano, Astrophys. J. 500, 411 (1998).

    Article  ADS  Google Scholar 

  2. A. Bans and A. Königl, Astrophys. J. 758, 100 (2012).

    Article  ADS  Google Scholar 

  3. P. Barge, L. Ricci, C. L. Carilli, and R. Previn-Ratnasingam, Astron. Astrophys. 605, A122 (2017).

    Article  ADS  Google Scholar 

  4. P. W. Cauley and C. M. Johns-Krull, Astrophys. J. 810, 5 (2015).

    Article  ADS  Google Scholar 

  5. C. P. Dullemond, Astron. Astrophys. 395, 853 (2002).

    Article  ADS  Google Scholar 

  6. C. P. Dullemond, C. Dominik, and A. Natta, Astrophys. J. 560, 957 (2001).

    Article  ADS  Google Scholar 

  7. C. P. Dullemond and J. D. Monnier, Ann. Rev. 48, 205 (2010).

    Google Scholar 

  8. K. M. Flaherty and J. Muzerolle, Astrophys. J. 719, 1733 (2010).

    Article  ADS  Google Scholar 

  9. P. Godon and M. Livio, Astrophys. J. 537, 396 (2000).

    Article  ADS  Google Scholar 

  10. V. P. Grinin, Sov. Astron. Lett. 14, 27 (1988).

    ADS  Google Scholar 

  11. V. P. Grinin, ASP Conf. Proc. 62, 63 (1994).

    ADS  Google Scholar 

  12. V. P. Grinin, ASP Conf. Proc. 219, 216 (2000).

    ADS  Google Scholar 

  13. V. P. Grinin, N. N. Kiselev, N. K. Minikulov, and G. P. Chernova, Sov. Astron. Lett. 14, 219 (1988).

    ADS  Google Scholar 

  14. V. P. Grinin, N. N. Kiselev, N. Kh. Minikulov, G. P. Chernova, and N. V. Voshchinnikov, Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  15. T. T. Ke, H. Huang, and D. N. C. Lin, Astrophys. J. 745, 60 (2012).

    Article  ADS  Google Scholar 

  16. Sang-Hee Kim, P. G. Martin, and P. D. Hendry, Astrophys. J. 422, 164 (1994).

    Article  ADS  Google Scholar 

  17. A. Kreplin, D. Madlener, L. Chen, G. Weigelt, S. Kraus, V. Grinin, L. Tambovtseva, and M. Kishimoto, Astron. Astrophys. 590, A96 (2016).

    Article  ADS  Google Scholar 

  18. I. Mendigutía, N. Calvet, B. Montesinos, A. Mora, J. Muzerolle, C. Eiroa, R. D. Oudmaijer, and B. Merín, Astron. Astrophys. 535, A99 (2011).

    Article  ADS  Google Scholar 

  19. A. Natta and B. A. Whitney, Astron. Astrophys. 364, 633 (2000).

    ADS  Google Scholar 

  20. A. Natta, T. Prusti, R. Nery, D. Wooden, V. P. Grinin, and V. Mannings, Astron. Astrophys. 371, 186 (2001).

    Article  ADS  Google Scholar 

  21. M. O’Sullivan, M. Truss, C. Walker, K. Wood, O. Matthews, B. Whitney, and J. E. Bjorkman, Mon. Not. R. Astron. Soc. 358, 632 (2005).

    Article  ADS  Google Scholar 

  22. A. Pereyra, F. X. de Araújo, A. M. Magãlhaes, M. Borges Fernandes, and A. Domiciano de Souza, Astron. Astrophys. 508, 1337 (2009).

    Article  ADS  Google Scholar 

  23. M. A. Pogodin, S. Hubrig, R. V. Yudin, M. Schöller, J. F. González, and B. Stelzer, Astron. Nachr. 333, 594 (2012).

    Article  ADS  Google Scholar 

  24. T. P. Robitaille, Astron. Astrophys. 536, A79 (2011).

    Article  ADS  Google Scholar 

  25. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Mon. Not. R. Astron. Soc. 399, 1802 (2009).

    Article  ADS  Google Scholar 

  26. A. N. Rostopchina-Shakhovskaja, V. P. Grinin, and D. N. Shakhovskoi, Astrophysics 55, 147 (2012).

    Article  ADS  Google Scholar 

  27. P. N. Safier, Astrophys. J. 408, 115 (1993a).

    Article  ADS  Google Scholar 

  28. P. N. Safier, Astrophys. J. 408, 148 (1993b).

    Article  ADS  Google Scholar 

  29. D. N. Shakhovskoi, A. N. Rostopchina, V. P. Grinin, and N. Kh. Minikulov, Astron. Rep. 47, 301 (2003).

    Article  ADS  Google Scholar 

  30. S. G. Shulman, Astron. Comput. 24, 104 (2018).

    Article  ADS  Google Scholar 

  31. S. G. Shulman and V. P. Grinin, Astron. Lett. 45, 384 (2019).

    Article  ADS  Google Scholar 

  32. J. Steinacker, Th. Henning, A. Bacmann, and D. Semenov, Astron. Astrophys. 401, 405 (2003).

    Article  ADS  Google Scholar 

  33. J. Steinacker, A. Bacmann, and T. Henning, Astrophys. J. 645, 920 (2006).

    Article  ADS  Google Scholar 

  34. C. Surville and P. Barge, Astron. Astrophys. 579, A100 (2015).

    Article  ADS  Google Scholar 

  35. L. V. Tambovtseva and V. P. Grinin, Astron. Lett. 34, 231 (2008).

    Article  ADS  Google Scholar 

  36. P. S. Teixeira, C. J. Lada, K. Wood, T. P. Robitaille, and K. L. Luhman, Astrophys. J. 700, 454 (2009).

    Article  ADS  Google Scholar 

  37. N. J. Turner, M. Benisty, C. P. Dullemond, and S. Hirose, Astrophys. J. 780, 42 (2014).

    Article  ADS  Google Scholar 

  38. D. Vinković and T. Jurkić, Astrophys. J. 658, 462 (2007).

    Article  ADS  Google Scholar 

  39. N. V. Voshchinnikov, Astrophysics 30, 313 (1989).

    Article  ADS  Google Scholar 

  40. N. V. Voshchinnikov and V. P. Grinin, Astrophysics 34, 84 (1991).

    Article  ADS  Google Scholar 

  41. N. V. Voshchinnikov, V. P. Grinin, and V. V. Karjukin, Astron. Astrophys. 294, 547 (1995).

    ADS  Google Scholar 

  42. R. L. White Astrophys. J. 229 954 (1979).

    Article  ADS  Google Scholar 

  43. S. Wolf and H. Klahr, Astrophys. J. 578, L79 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to A.N. Rostopchina-Shakhovskaya who provided the observations of UX Ori and WW Vul from the Crimean Astrophysical Observatory archive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shulman.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 10, pp. 716–730.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulman, S.G., Grinin, V.P. Influence of Large-Scale Perturbations in Circumstellar Disks on the Linear Polarization Parameters of UX Ori Stars. Astron. Lett. 45, 664–676 (2019). https://doi.org/10.1134/S1063773719100062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719100062

Keywords

Navigation