Skip to main content
Log in

Experimental Study of the Bias Direct Currents on the Transverse Giant Magnetoimpedance Effect in a Soft Ferromagnetic Microwire

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper reports on an experimental study of influences of the bias direct currents on the transverse giant magnetoimpedance effect in a FeCoNiBSiMo microwire. Along with increasing the bias direct currents, the low field sensitivity of the impedance increases evidently at high frequency (10–120 MHz). The low field sensitivity (4 Oe) by presence of 30 mA of bias direct currents is about 3 times larger than that without using bias direct currents at 60 MHz. However, the high field sensitivity of the impedance decreases by use of bias direct currents at high frequency. In addition, the low field linearity is improved by use of bias direct currents at high frequency. The experimental results could be very useful for the design of multi-dimensional giant magnetoimpedance sensors with high low field sensitivity and linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, J., Shen, H., Xing, D., Sun, J.: Optimization of GMI properties by AC joule annealing in melt-extracted Co-rich amorphous wires for sensor applications. Phys. Status Solidi A. 211, 1577–1582 (2014)

    Article  ADS  Google Scholar 

  2. Chen, D.L., Li, X., Pan, H.L., Luan, H.Y., Zhao, Z.J.: Magneto-impedance effect of composite wires prepared by chemical plating under DC current. Nano-Micro Lett. 6, 227–232 (2014)

    Article  Google Scholar 

  3. Cheng, W.: Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors. IEEE Sensors J. 16, 5548–5556 (2016)

    Article  ADS  Google Scholar 

  4. Xie, L., Li, X., Zou, J.T., Pan, H.L., Xie, W.H., Zhao, Z.J.: Optimized giant magneto-impedance effect in electroless-deposited NiFeP/Cu composite wires. Surf. Coat. Technol. 334, 158–163 (2018)

    Article  Google Scholar 

  5. Phan, M.H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323 (2008)

    Article  Google Scholar 

  6. Liu, J., Li, Z., Jiang, S., Du, Z., Shen, H., Zhang, L.: Multiplex magnetic field annealing evoked remarkable GMI improvement for co-based amorphous wires. J. Alloys Compd. 683, 7–14 (2016)

    Article  Google Scholar 

  7. Zhang, S.L., Chai, Y.S., Fang, D.Q., Wang, L.C., Xing, D.W., Sun, J.F.: Giant magneto-impedance effect of two paralleled amorphous microwires. Rare Metals. 35, 344–348 (2016)

    Article  Google Scholar 

  8. Uchiyama, T., Mohri, K., Nakayama, S.: Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor. IEEE Trans. Magn. 47, 3070–3073 (2011)

    Article  ADS  Google Scholar 

  9. Zhao, C., Pan, L., Ma, X., Li, J., Liu, Q., Wang, J.: Cycle rapid cooling treatment effect on the magnetic properties and giant magnetoimpedance properties of Co-based amorphous alloy ribbons. J. Magn. Magn. Mater. 444, 198–205 (2017)

  10. Jiang, D.G., Ye, Y.X., Guo, B.: Effect of adding co on crystallization behavior and magnetoimpedance effect of amorphous/nanocrystalline FeCuNbSiB Alloy Strips. Adv. Condens. Matter Phys. 2710396, 6 (2019). https://doi.org/10.1155/2019/2710396.

  11. Lu, W., Xu, Y., Shi, J., Song, Y., Li, X.: Soft magnetic properties and giant magnetoimpedance effect in thermally annealed amorphous Co68Fe4Cr3Si15B10 alloy ribbons. J. Alloys Compd. 638, 233–238 (2015)

    Article  Google Scholar 

  12. Song, Y., Jia, M., Lin, M., Li, X., Lu, W.: Thermal stability, magnetic properties and GMI effect of Cr-doping amorphous CoFeSiB ribbons. J. Alloys Compd. 622, 500–503 (2015)

    Article  Google Scholar 

  13. Moradi, M., Hajiali, M., Khezri, M., Roozmeh, S.E., Mohseni, S.M.: Structural characterization and magnetoimpedance effect of current annealed Co-based amorphous ribbons at different ambient. J. Supercond. Nov. Magn. 28, 265–269 (2015)

    Article  Google Scholar 

  14. Wang, Y., Wen, Y., Li, P., Chen, L.: Improved magnetic sensor using laminated magnetic multilayer with coupled exciting and sensing micro planar coils. Sens. Actuators, A. 284, 112–119 (2018)

    Article  Google Scholar 

  15. Zhang, L., Li, M., Wang, X., Zheng, H., Wang, N., Xie, J., Deng, L.: Magnetic properties of ferromagnetic microstructured multilayer films. IEEE Magn. Lett. 7, 1–4 (2016)

    ADS  Google Scholar 

  16. Wang, T., Lei, C., Yang, Z., Sun, X., Liu, Y., Zhou, Y.: Meander-shaped magnetoimpedance sensor for measuring inhomogeneous magnetic fringe fields of NiFe films. Appl. Phys. Lett. 105, 172404 (2014)

    Article  ADS  Google Scholar 

  17. Yokoyama, H., Kusunoki, K., Hayashi, Y., Hashi, S., Ishiyama, K.: Magneto-impedance properties of thin-film type sensors using CoNbZr/SiO2 multilayer films. J. Magn. Magn. Mater. 478, 38–42 (2019)

    Article  ADS  Google Scholar 

  18. Yang, Z., Sun, X.C., Wang, T., Lei, C., Liu, Y., Zhou, Y., Lei, J.: A giant magnetoimpedance-based biosensor for sensitive detection of Escherichia coli O157: H7. Biomed. Microdevices. 17(5), 5 (2015)

    Article  Google Scholar 

  19. Feng, Z., Zhi, S., Guo, L., Lei, C., Zhou, Y.: Investigation of magnetic field anneal in micro-patterned amorphous ribbon on giant magneto-impedance effect enhancement. Sens. Rev. 39, 309–317 (2019)

    Article  Google Scholar 

  20. Ipatov, M., Zhukova, V., Gonzalez, J., Zhukov, A.: Symmetry breaking effect of dc bias current on magnetoimpedance in microwire with helical anisotropy: application to magnetic sensors. J. Appl. Phys. 110, 086105 (2011)

    Article  ADS  Google Scholar 

  21. Phan, M.H., Yu, S.C., Kim, C.G., Vázquez, M.: Origin of asymmetrical magnetoimpedance in a Co-based amorphous microwire due to dc bias current. Appl. Phys. Lett. 83, 2871–2873 (2003)

    Article  ADS  Google Scholar 

  22. Song, S.H., Kim, K.S., Yu, S.C., Kim, C.G., Vazquez, M.: Asymmetric GMI characteristics in current-biased amorphous (Co0. 94Fe0. 06) 72.5 Si12. 5B15 wire. J. Magn. Magn. Mater. 215, 532–534 (2000)

    Article  ADS  Google Scholar 

  23. Malátek, M., Kraus, L.: Off-diagonal GMI sensor with stress-annealed amorphous ribbon. Sens. Actuators, A. 164, 41–45 (2010)

    Article  Google Scholar 

  24. Gudoshnikov, S., Usov, N., Nozdrin, A., Ipatov, M., Zhukov, A., Zhukova, V.: Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire. Phys. Status Solidi A. 211, 980–985 (2014)

    Article  ADS  Google Scholar 

  25. Chiriac, H., Óvári, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1996)

    Article  Google Scholar 

  26. Dzhumazoda, A., Panina, L.V., Nematov, M.G., Ukhasov, A.A., Yudanov, N.A., Morchenko, A.T., Qin, F.X.: Temperature-stable magnetoimpedance (MI) of current-annealed Co-based amorphous microwires. J. Magn. Magn. Mater. 474, 374–380 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, B., He, Y. et al. Experimental Study of the Bias Direct Currents on the Transverse Giant Magnetoimpedance Effect in a Soft Ferromagnetic Microwire. J Supercond Nov Magn 33, 1031–1037 (2020). https://doi.org/10.1007/s10948-019-05298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05298-z

Keywords

Navigation