Skip to main content
Log in

Half-Metallic Ferromagnetism in Gd-Doped Ti1/2Mg1/2N Alloy: An ab initio Prediction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we have investigated the electronic and magnetic properties of gadolinium Gd-doped Ti0.5Mg0.5N alloy. The supercell of 32 atoms was generated by the Alloy Theoretic Automated Toolkit (ATAT), and then we have used first-principles calculations performed by the full-potential linearized augmented plane wave method based on the spin density functional theory within the generalized gradient approximation of Perdew-Burke-Ernzerhof and the modified Becke-Johnson potential. We have also performed GGA + U calculations describing the strong correlation between the 4f electrons in Gd. Both GGA and mBJ calculations have shown that Ti0.5Mg0.5N alloy depicted a semiconductor character with band gaps of 0.403 eV and 1.184 eV, respectively. The calculated atomic-resolved densities of states of Ti6Gd2Mg8N16 alloy predict the half-metallic character (HMs) with ferromagnetic order (FM) using the modified Becke-Johnson potential mBJ. We have also estimated the Curie temperatures by using the Heisenberg model in the mean field approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: Phys Rev Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  2. Fang, C.M., De Wijs, G., De Groot, R.: J Appl Phys. 91, 8340 (2002)

    Article  ADS  Google Scholar 

  3. Kaminska, M., Twardowski, A., Wasik, D.: J Mater Sci Mater Electron. 19, 828 (2008)

    Article  Google Scholar 

  4. C. Fong, J. Pask, and L. Yang, Half-metallic materials and their properties, Vol. 2 (World Scientific, 2013).

  5. Özdogan, K., Galanakis, I., Sasioglu, E., Aktas, B.: J Phys Condens Matter. 18, 2905 (2006)

    Article  ADS  Google Scholar 

  6. Xu, Y.-Q., Liu, B.-G., Pettifor, D.: Phys Rev B. 66, 184435 (2002)

    Article  ADS  Google Scholar 

  7. Sanyal, B., Bergqvist, L., Eriksson, O.: Phys Rev B. 68, 054417 (2003)

    Article  ADS  Google Scholar 

  8. Schwarz, K.: Journal of Physics F: Metal Physics. 16, L211 (1986)

    Article  ADS  Google Scholar 

  9. Coey, J., Chien, C.: MRS Bull. 28, 720 (2003)

    Article  Google Scholar 

  10. Swagten, H.: The magnetic behavior of diluted magnetic semiconductors. Springer, Boston (1990)

    Google Scholar 

  11. Zenasni, H., Faraoun, H., Esling, C.: J Magn Magn Mater. 333, 162 (2013)

    Article  ADS  Google Scholar 

  12. Alling, B.: Phys Rev B. 89, 085112 (2014)

    Article  ADS  Google Scholar 

  13. van de Walle, A., Tiwary, P., de Jong, M.M., Olmsted, D.L., Asta, M.D., Dick, A., Shin, D., Wang, Y., Chen, L.-Q., Liu, Z.-K.: Calphad. 42, 13 (2013)

    Article  Google Scholar 

  14. Zunger, A., Wei, S.H., Ferreira, L.G., Bernard, J.E.: Phys Rev Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  15. Hohenberg, P.P.H., Kohn, W.: Phys Rev Lett. 136, B864 (1964)

    ADS  Google Scholar 

  16. Kohn, W., Sham, L.J.: Phys Rev Lett. 140, A1133 (1965)

    ADS  Google Scholar 

  17. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna (2001)

    Google Scholar 

  18. Sjöstedt, E., Nordstrom, L., Singh, D.J.: Solid State Commun. 114, 15 (2000)

    Article  ADS  Google Scholar 

  19. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys Rev Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. Tran, F., Blaha, P.: Phys Rev Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  21. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys Rev B. 44, 943 (1991)

    Article  ADS  Google Scholar 

  22. Murnaghan, F.D.: Proc Natl Acad Sci U S A. 30, 5390 (1944)

    Google Scholar 

  23. Wang, B., Gall, D.: Published in the proceedings of the 2018 IEEE Nanotechnology Symposium (ANTS), pp. 1–5. Albany, NY (2018)

    Book  Google Scholar 

  24. Liu, Y., Liu, B.-G.: J Phys D Appl Phys. 40, 6791–6796 (2007)

    Article  ADS  Google Scholar 

  25. Galanakis, I., Şaşıoğlu, E., Özdoğan, K.: Phys Rev B. 77, 214417 (2008)

    Article  ADS  Google Scholar 

  26. Zhao, R., Pan, W., Yang, T., Li, Z., Xiao, B., Zhang, M.: J Phys Chem C. 51, 28679–28684 (2015)

    Article  Google Scholar 

  27. Pickett, W.E., Moodera, J.S.: Phys Today. 54, 39 (2001)

    Article  ADS  Google Scholar 

  28. Shi, S.Q., Ouyang, C.Y., Fang, Q., Shen, J.Q., Tang, W.H., Li, C.R.: EPL. 83, 69001 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kacimi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddouche, Z., Hallouche, A., Dahani, A. et al. Half-Metallic Ferromagnetism in Gd-Doped Ti1/2Mg1/2N Alloy: An ab initio Prediction. J Supercond Nov Magn 33, 1215–1222 (2020). https://doi.org/10.1007/s10948-019-05340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05340-0

Keywords

Navigation