Skip to main content
Log in

Finite-size scaling of the density of states inside band gaps of ideal and disordered photonic crystals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the density of states (DOS) in band gaps of ideal and disordered three-dimensional photonic crystals of finite size. The ideal crystal is a diamond lattice of resonant point scatterers (atoms) whereas the disordered one is obtained from it by displacing the scatterers by random distances in random directions. We find that DOS inside a band gap of the ideal crystal decreases as the inverse of the crystal size. Disorder narrows the band gap and DOS exhibits enhanced fluctuations near the new band edges. However, the average DOS still exhibits the same scaling with the crystal size within the remaining band gap. A phenomenological explanation of this scaling suggests that it should hold for one- and two-dimensional photonic crystals as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade,Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton Univ. Press, Princeton, 2008)

  2. A.F. Koenderink, A. Lagendijk, W.L. Vos, Phys. Rev. B 72, 153102 (2005)

    Article  ADS  Google Scholar 

  3. C. Toninelli, E. Vekris, G.A. Ozin, S. John, D.S. Wiersma, Phys. Rev. Lett. 101, 123901 (2008)

    Article  ADS  Google Scholar 

  4. S. Bin Hasan, A.P. Mosk, W.L. Vos, A. Lagendijk, Phys. Rev. Lett. 120, 237402 (2018)

    Article  ADS  Google Scholar 

  5. L.L. Foldy, Phys. Rev. 67, 107 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Lax, Rev. Mod. Phys. 23, 287 (1951)

    Article  ADS  Google Scholar 

  7. G.S. Agarwal, Phys. Rev. A 2, 2038 (1970)

    Article  ADS  Google Scholar 

  8. R.H. Lehmberg, Phys. Rev. A 2, 883 (1970)

    Article  ADS  Google Scholar 

  9. M. Rusek, A. Orlowski, J. Mostowski, Phys. Rev. E 53, 4122 (1996)

    Article  ADS  Google Scholar 

  10. I.M. Sokolov, D.V. Kupriyanov, M.D. Havey, J. Exp. Theor. Phys. 112, 246 (2011)

    Article  ADS  Google Scholar 

  11. P.M. Morse, H. Feschbach,Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

  12. Ya.A. Fofanov, A.S. Kuraptsev, I.M. Sokolov, M.D. Havey, Phys. Rev. A 87, 063839 (2013)

    Article  ADS  Google Scholar 

  13. S.E. Skipetrov, I.M. Sokolov, Phys. Rev. Lett. 112, 023905 (2014)

    Article  ADS  Google Scholar 

  14. M. Antezza, Y. Castin, Phys. Rev. A 88, 033844 (2013)

    Article  ADS  Google Scholar 

  15. F. Sgrignuoli, R. Wang, F.A. Pinheiro, L. Dal Negro, Phys. Rev. B 99, 104202 (2019)

    Article  ADS  Google Scholar 

  16. F. Sgrignuoli, M. Röntgen, C.V. Morfonios, P. Schmelcher, L. Dal Negro, Opt. Lett. 44, 375 (2019)

    Article  ADS  Google Scholar 

  17. M. Antezza, Y. Castin, Phys. Rev. A 80, 013816 (2009)

    Article  ADS  Google Scholar 

  18. K. Joulain, R. Carminati, J.-P. Mulet, J.-J. Greffet, Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  19. G. Colas des Francs, C. Girard, J.-C. Weeber, C. Chicanne, T. David, A. Dereux, D. Peyrade, Phys. Rev. Lett. 86, 4950 (2001)

    Article  ADS  Google Scholar 

  20. C. Chicanne, T. David, R. Quidant, J.C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs, C. Girard, Phys. Rev. Lett. 88, 097402 (2002)

    Article  ADS  Google Scholar 

  21. A. Cazé, R. Pierrat, R. Carminati, Phys. Rev. A 82, 043823 (2010)

    Article  ADS  Google Scholar 

  22. J.A. Klugkist, M. Mostovoy, J. Knoester, Phys. Rev. Lett. 96, 163903 (2006)

    Article  ADS  Google Scholar 

  23. K. Busch, S. John, Phys. Rev. E 58, 3896 (1998)

    Article  ADS  Google Scholar 

  24. A.A. Asatryan, K. Busch, R.C. McPhedran, L.C. Botten, C. Martijn de Sterke, N.A. Nicorovici, Phys. Rev. E 63, 046612 (2001)

    Article  ADS  Google Scholar 

  25. E. Yeganegi, A. Lagendijk, A.P. Mosk, W.L. Vos, Phys. Rev. B 89, 045123 (2014)

    Article  ADS  Google Scholar 

  26. P. Lodahl, A.F. van Driel, I.S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W.L. Vos, Nature 430, 654 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey E. Skipetrov.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skipetrov, S.E. Finite-size scaling of the density of states inside band gaps of ideal and disordered photonic crystals. Eur. Phys. J. B 93, 70 (2020). https://doi.org/10.1140/epjb/e2020-100473-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100473-3

Navigation