Skip to main content
Log in

Electron-hole asymmetry in electrical conductivity of low-fluorinated graphene: numerical study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By using the real-space Green-Kubo formalism we study numerically the electron transport properties of low-fluorinated graphene. At low temperatures the diffuse transport regime is expected to be prevalent, and we found a pronounced electron-hole asymmetry in electrical conductivity as a result of quasi-resonant scattering on the localized states. For the finite temperatures in the variable-range hopping transport regime the interpretation of numerical results leads to the appearance of local minima and maxima of the resistance near the energies of the localized states. A comparison with the experimental measurements of the resistance in graphene samples with various fluorination degrees is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  2. S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  3. F. Withers, M. Dubois, A.K. Savchenko, Phys. Rev. B 82, 073403 (2010)

    Article  ADS  Google Scholar 

  4. L.G. Bulusheva, A.V. Okotrub, inNew Fluorinated Carbons: Fundamentals and Applications (Elsevier, 2017), Ch. 8

  5. V. Mazánek et al., Appl. Mater. Today 15, 343 (2019)

    Article  Google Scholar 

  6. D.C. Elias et al., Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  7. D. Kochan, M. Gmitra, J. Fabian, Phys. Rev. Lett. 112, 116602 (2014)

    Article  ADS  Google Scholar 

  8. S. Irmer, T. Frank, S. Putz, M. Gmitra, D. Kochan, J. Fabian, Phys. Rev. B 91, 115141 (2015)

    Article  ADS  Google Scholar 

  9. W.-K. Lee et al., Nano Lett. 11, 5461 (2011)

    Article  ADS  Google Scholar 

  10. B. Rzeszotarski, A. Mrenca-Kolasinska, B. Szafran, Phys. Rev. B 96, 245307 (2017)

    Article  ADS  Google Scholar 

  11. T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 80, 085428 (2009)

    Article  ADS  Google Scholar 

  12. S. Irmer, D. Kochan, J. Lee, J. Fabian, Phys. Rev. B 97, 075417 (2018)

    Article  ADS  Google Scholar 

  13. R.D. Yamaletdinov, V.L. Katkov, Y.A. Nikiforov, A.V. Okotrub, V.A. Osipov, Adv. Theory Simul., https://doi.org/10.1002/adts.201900199

  14. Z. Fan et al., arXiv:1811.07387 (2018)

  15. S. Roche, D. Mayou, Phys. Rev. Lett. 79, 2518 (1997)

    Article  ADS  Google Scholar 

  16. I. Sanchez Esqueda, C.D. Cress, IEEE Trans. Nucl. Sci. 62, 2906 (2015)

    Article  ADS  Google Scholar 

  17. A. Weisse, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)

    Article  ADS  Google Scholar 

  18. Z. Fan, A. Uppstu, T. Siro, A. Harju, Comput. Phys. Commun. 185, 28 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z. Fan, V. Vierimaa, A. Harju, Comput. Phys. Commun. 230, 113 (2018)

    Article  ADS  Google Scholar 

  20. A.W. Cummings, S.M.-M. Dubois, J.-C. Charlier, S. Roche, Nano Lett. 19, 7418 (2019)

    Article  ADS  Google Scholar 

  21. A.C. Hewson,The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, UK, 1993)

  22. G.T. de Laissardiere, D. Maiou, Mod. Phys. Lett. B 25, 1019 (2011)

    Article  ADS  Google Scholar 

  23. M. Di Ventra, inElectrical transport in nanoscale systems (Cambridge University Press, 2008), Chap. 3

  24. F. Withers, S. Russo, M. Dubois, M.F. Craciun, Nanoscale Res. Lett. 6, 526 (2011)

    Article  ADS  Google Scholar 

  25. K. Tahara et al., Appl. Phys. Lett. 103, 143106 (2013)

    Article  ADS  Google Scholar 

  26. A.B. Kaiser et al., Nano Lett. 9, 1787 (2009)

    Article  ADS  Google Scholar 

  27. N.A. Nebogatikova, I.V. Antonova, V.A. Volodin, V.Ya. Prinz, Physica E 52, 106 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V. Kolesnikov.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, D.V., Osipov, V.A. Electron-hole asymmetry in electrical conductivity of low-fluorinated graphene: numerical study. Eur. Phys. J. B 93, 64 (2020). https://doi.org/10.1140/epjb/e2020-100508-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100508-3

Keywords

Navigation