Skip to main content
Log in

Spectrum and normalized modes of acoustic phonons in multilayer nitride-based nanostructure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the model of an elastic continuum, precise analytical solutions of the equations of motion are established and a theory of the spectrum and components of the displacement field of acoustic phonons is developed for a two-well resonant-tunneling nanostructure with AlN – quantum barriers and GaN∕AlxGa1−xN – quantum wells. For the experimentally realised nanostructure – the active zone of a quantum cascade detector – depending on its geometric parameters, the spectrum of acoustic phonons and normalized components of the displacement fields were calculated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 100, 181103 (2012)

    Article  ADS  Google Scholar 

  2. S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach, E. Warde, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 101, 251101 (2012)

    Article  ADS  Google Scholar 

  3. A. Pesach, E. Gross, C.-Y. Huang, Y.-D. Lin, A. Vardi, S.E. Schacham, S. Nakamura, G. Bahir, Appl. Phys. Lett. 102, 022110 (2013)

    Article  ADS  Google Scholar 

  4. T. Kotani, M. Arita, K. Hoshino, Y. Arakawa, Appl. Phys. Lett. 108, 052102 (2016)

    Article  ADS  Google Scholar 

  5. G.S. Huang, T.C. Lu, H.H. Yao, H.C. Kuo, S.C. Wang, G. Sun, C. Lin, L. Chang, R.A. Soref, J. Cryst. Growth 298, 687 (2017)

    Article  ADS  Google Scholar 

  6. B. Mirzaei, A. Rostami, H. Baghban, Opt. Laser Technol. 44, 378 (2012)

    Article  ADS  Google Scholar 

  7. K. Wang, T.-T. Lin, L. Wang, W. Terashima, H. Hirayama, Jpn. J. Appl. Phys. 57, 081001 (2018)

    Article  ADS  Google Scholar 

  8. V.X. Ho, T M. Altahtamouni, H.X. Jiang, J.Y. Lin, J.M. Zavada, N.Q. Vinh, ACS Photonics 5, 1303 (2018)

    Article  Google Scholar 

  9. J.M. Li, Y.W. Lu, J. Vac. Sci. Technol. B 22, 2568 (2004)

    Article  Google Scholar 

  10. S. Saha, J. Kumar, J. Comput. Electron. 15, 1531 (2016)

    Article  Google Scholar 

  11. I.V. Boyko, Condens. Matt. Phys. 21, 43701 (2018)

    Article  Google Scholar 

  12. S. Leconte, L. Gerrer, E. Monroy, Microelectron. J. 40, 339 (2009)

    Article  Google Scholar 

  13. Y. Baines, J. Buckley, J. Biscarrat, G. Garnier, M. Charles, W. Vandendaele, C. Gillot, M. Plissonnier, Sci. Rep. 7, 8177 (2017)

    Article  ADS  Google Scholar 

  14. L. Zhang, Superlattices Microstruct. 40, 144 (2006)

    Article  ADS  Google Scholar 

  15. L. Zhang, J.-J. Shi, Commun. Theor. Phys. 47, 349 (2007)

    Article  ADS  Google Scholar 

  16. W.-D. Huang, G.-D. Chen, H.-G. Ye, Y.-J. Ren, Physica B 410, 33 (2013)

    Article  ADS  Google Scholar 

  17. L. Zhang, Superlattices Microstruct. 53, 113 (2013)

    Article  ADS  Google Scholar 

  18. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Superlattices Microstruct. 33, 155 (2003)

    Article  ADS  Google Scholar 

  19. E.P. Pokatilov, D.L. Nika, J. Appl. Phys. 95, 5626 (2004)

    Article  ADS  Google Scholar 

  20. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Appl. Phys. Lett. 85, 825 (2004)

    Article  ADS  Google Scholar 

  21. E.P. Pokatilov, D.L. Nika, A.S. Askerov, A.A. Balandin, J. Appl. Phys. 102, 054304 (2007)

    Article  ADS  Google Scholar 

  22. S.M. Rytov, Akust. Zh. 71, 71 (1956)

    Google Scholar 

  23. Y.H. Zan, S.L. Ban, Y.J. Chai, Y. Qu, Superlattices Microstruct. 102, 64 (2017)

    Article  ADS  Google Scholar 

  24. J. Wang, L. Zhu, W. Yin, Comput. Mater. Sci. 145, 14 (2018)

    Article  Google Scholar 

  25. L. Zhu, H. Luo, J. Alloys Compd. 685, 619 (2016)

    Article  Google Scholar 

  26. L. Zhu, H. Luo, J. Theor. Appl. Mech. 6, 277 (2016)

    Google Scholar 

  27. F.J. Yang, S.L. Ban, Solid State Commun. 161, 5 (2013)

    Article  ADS  Google Scholar 

  28. M.A. Stroscio, M. Dutta,Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001)

  29. L. Xu, C.A. Curwen, D. Chen, J.L. Reno, T. Itoh, B.S. Williams, IEEE J. Sel. Top. Quantum Electr. 23, 1 (2017)

    Google Scholar 

  30. S.P. Lepkowski, Phys. Rev. B. 75, 195303 (2007)

    Article  ADS  Google Scholar 

  31. M.-M. Soumelidou, I. Belabbas, J. Kioseoglou, Ph. Komninou, J. Chen, Th. Karakostas, Comput. Condens. Matter 10, 25 (2017)

    Article  Google Scholar 

  32. L. Wendler, V.G. Grigoryan, Surf. Sci. 206, 203 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Boyko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyko, I., Petryk, M. & Fraissard, J. Spectrum and normalized modes of acoustic phonons in multilayer nitride-based nanostructure. Eur. Phys. J. B 93, 57 (2020). https://doi.org/10.1140/epjb/e2020-100597-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100597-x

Keywords

Navigation