Skip to main content
Log in

Modeling dependence via copula of functionals of Fourier coefficients

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

The goal of this paper is to develop a measure for characterizing complex dependence between time series that cannot be captured by traditional measures such as correlation and coherence. Our approach is to use copula models of functionals of the Fourier coefficients which is a generalization of coherence. Here, we use standard parametric copula models with a single parameter from both elliptical and Archimedean families. Our approach is to analyze changes in activity in local field potentials in the rat cortex prior to and immediately following the onset of stroke. We present the necessary theoretical background, the multivariate models and an illustration of our methodology on these local field potential data. Simulations with nonlinear dependent data reveal that there is information that is missed by not taking into account dependence on specific frequencies. Moreover, these simulations demonstrate how our proposed method captures more complex nonlinear dependence between time series. Finally, we illustrate our copula-based approach in the analysis of local field potentials of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas K, Berg D (2009) Models for construction of multivariate dependence—a comparison study. Eur J Finance 15(7–8):639–659

    Article  Google Scholar 

  • Akaike H (1987) Factor analysis and AIC. In: Selected papers of Hirotugu Akaike, Springer, pp 371–386

  • De la Pena V, Ibragimov R, Sharakhmetov S et al (2006) Characterizations of joint distributions, copulas, information, dependence and decoupling, with applications to time series. In: Optimality, Institute of Mathematical Statistics, pp 183–209

  • Deheuvels P (1979) La fonction de dépendance empirique et ses propriétés. académie royale de belgique. Bull Cl Sci 65(5):274–292

    MATH  Google Scholar 

  • Fiecas M, Ombao H (2011) The generalized shrinkage estimator for the analysis of functional connectivity of brain signals. Ann Appl Stat 5:1102–1125

    Article  MathSciNet  Google Scholar 

  • Fiecas M, Ombao H (2016) Modeling the evolution of dynamic brain processes during an associative learning experiment. J Am Stat Assoc 111(516):1440–1453

    Article  MathSciNet  Google Scholar 

  • Freyermuth J, Ombao H, von Sachs R (2010) Spectral estimation from replicated time series: an approach using the tree-structured wavelets mixed effects model. J Am Stat Assoc 105:634–646

    Article  Google Scholar 

  • Gao X, Shen W, Shahbaba B, Fortin N, Ombao H (2016) Evolutionary state-space model and its application to time-frequency analysis of local field potentials. Preprint arXiv:1610.07271

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  MathSciNet  Google Scholar 

  • Gijbels I, Mielniczuk J (1990) Estimating the density of a copula function. Commun Stat Theory Methods 19(2):445–464

    Article  MathSciNet  Google Scholar 

  • Gotman J (1982) Automatic recognition of epileptic seizures in the eeg. Electroencephalogr Clin Neurophysiol 54(5):530–540

    Article  Google Scholar 

  • Guevara MA, Corsi-Cabrera M (1996) Eeg coherence or eeg correlation? Int J Psychophysiol 23(3):145–153

    Article  Google Scholar 

  • Ibragimov R (2005) Copula-based dependence characteriztions and modeling for time series. Harvard Institute of Economic Research Discussion Paper No. 2094

  • Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press, Boca Raton

    Book  Google Scholar 

  • Jordanger LA, Tjøstheim D (2014) Model selection of copulas: aic versus a cross validation copula information criterion. Stat Probab Lett 92:249–255

    Article  MathSciNet  Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Griffin, Spokane Valley

    MATH  Google Scholar 

  • Li X, Mikusiński P, Taylor MD (1998) Strong approximation of copulas. J Math Anal Appl 225(2):608–623

    Article  MathSciNet  Google Scholar 

  • Long C, Brown EN, Manoach D, Solo V (2004) Spatiotemporal wavelet analysis for functional MRI. NeuroImage 23(2):500–516

    Article  Google Scholar 

  • Lowin JL (2010) The Fourier copula: theory & applications. SSRN. https://doi.org/10.2139/ssrn.1804664

  • Matousek M (1973) Review of various methods of eeg analysis. In: International EEG handbook. Elsevier, Amsterdam, vol 5(part A), pp 137–138

  • Motta G, Ombao H (2012) Evolutionary factor analysis of replicated time series. Biometrics 68(3):825–836

    Article  MathSciNet  Google Scholar 

  • Nelsen RB (2007) An introduction to copulas. Springer, Berlin

    MATH  Google Scholar 

  • Ngo D, Ombao H, Sun Y, Genton MG, Wu J, Srinivasan R, Cramer S (2015) An exploratory data analysis of electroencephalograms using the functional boxplots approach. Front Neurosci 9:282

    Article  Google Scholar 

  • Nunez PL, Srinivasan R et al (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, USA

    Book  Google Scholar 

  • Ombao H, Van Bellegem S (2006) Coherence analysis of nonstationary time series: a linear filtering point of view. IEEE Trans Signal Process 56:2259–2266

    Article  Google Scholar 

  • Ombao H, Von Sachs R, Guo W (2005) Slex analysis of multivariate nonstationary time series. J Am Stat Assoc 100(470):519–531

    Article  MathSciNet  Google Scholar 

  • Ombao H, Lindquist M, Thompson W, Aston J (2016) Handbook of statistical methods for neuroimaging. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Ombao H, Fiecas M, Ting C-M, Low YF (2018) Statistical models for brain signals with properties that evolve across trials. NeuroImage 180:609–618

    Article  Google Scholar 

  • Purdon PL, Solo V, Weisskoff RM, Brown EN (2001) Locally regularized spatiotemporal modeling and model comparison for functional MRI. NeuroImage 14(4):912–923

    Article  Google Scholar 

  • Sancetta A, Satchell S (2004) The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econ Theory 20(3):535–562

    Article  MathSciNet  Google Scholar 

  • Shaw J (1981) An introduction to the coherence function and its use in EEG signal analysis. J Med Eng Technol 5(6):279–288

    Article  Google Scholar 

  • Shaw JC (1984) Correlation and coherence analysis of the eeg: a selective tutorial review. Int J Psychophysiol 1(3):255–266

    Article  Google Scholar 

  • Shumway R, Stoffer D (2017) Time series analysis and its applications: with R examples, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    MATH  Google Scholar 

  • Van der Vaart AW (1998) Asymptotic statistics, vol 3. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wann EG (2017) Large-scale spatiotemporal neuronal activity dynamics predict cortical viability in a rodent model of ischemic stroke. Ph.D. Dissertation, UC Irvine

Download references

Acknowledgements

Hernando Ombao was supported by KAUST Baseline Funds, and Ron D. Frostig was supported by the Leducq Foundation (15CVD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Fontaine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontaine, C., Frostig, R.D. & Ombao, H. Modeling dependence via copula of functionals of Fourier coefficients. TEST 29, 1125–1144 (2020). https://doi.org/10.1007/s11749-020-00703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-020-00703-5

Keywords

Mathematics Subject Classification

Navigation