Skip to main content
Log in

The influence of the number of shock waves and the energy flux density on the Raman spectrum of collagen type I from rat

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock waves are used to treat musculoskeletal injuries and trigger the body’s mechanisms to initiate healing; however, the cellular and molecular working mechanisms are not fully known. Raman spectroscopy may be a useful tool to provide information on structural changes. Solid collagen type I from rat tail (> 90% pure) was suspended in water and was exposed in vitro to different numbers of shock waves and energy flux densities. Raman spectra were recorded at 2 h, 1 week, and 3 weeks after shock-wave treatment. The spectral analysis indicated that varying the number of shock waves and the energy flux density induced molecular changes in the collagen structure. Varying the energy flux density induced more significant changes than modifying the number of shock waves; however, in most cases, the collagen recovered its original conformation 3 weeks after treatment. A significant decrease in the relative intensities of the conformational bands, which include amide I, amide III, and stretching C–C, was observed at different energy flux densities. In many clinical cases, the natural repair of tissue is improved after shock-wave treatment. Raman spectroscopy revealed that varying the energy flux density of the shock waves applied to rat collagen type I induced strong conformational molecular changes. Approximately 2–3 weeks after shock-wave treatment, a phase of “molecular ordering” tending to a “recovering molecular sequence repair” was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from [35]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wess, O.: Physics and technology of shock wave and pressure wave therapy. 9th International Congress of the International Society for Musculoskeletal Shockwave Therapy (ISMST), News Letter, ISMST, vol. 2, pp. 2–12 (2006)

  2. Cleveland, R.O., McAteer, J.A.: The physics of shock-wave lithotripsy. In: Smith, A.D., Badlani, G.H., Preminger, G.M., Kavoussi, L.R. (eds.) Smith’s Textbook of Endourology, pp. 529–558. Wiley, Chichester (2012). https://doi.org/10.1002/9781444345148.ch49

    Chapter  Google Scholar 

  3. Loske, A.M.: Medical and Biomedical Applications of Shock Waves. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47570-7

    Book  Google Scholar 

  4. Brañes, J., Contreras, H., Cabello, P., Antonic, V., Guiloff, L., Brañes, M.: Shoulder rotator cuff responses to extracorporeal shockwave therapy: morphological and immunohistochemical analysis. Shoulder Elbow 4, 163–168 (2012). https://doi.org/10.1111/j.1758-5740.2012.00178.x

    Article  Google Scholar 

  5. Sandoval, C., Valenzuela, A., Rojas, C., Brañes, M., Guiloff, L.: Extracorporeal shockwave therapy for atrophic and oligotrophic nonunion of tibia and femur in high energy trauma patients. Case series. Int. J. Surg. Open 9, 36–40 (2017). https://doi.org/10.1016/j.ijso.2017.09.002

    Article  Google Scholar 

  6. Wang, C., Wang, F., Yang, K.: Biological mechanism of musculoskeletal shock waves. Int. Soc. Musculoskelet. Shockwave Ther. News 1, 5–11 (2004)

    Google Scholar 

  7. Wang, C.-J., Chen, H.-S., Chen, C.-E., Yang, K.D.: Treatment of nonunions of long bone fractures with shock waves. Clin. Orthop. Relat. Res. 387, 95–101 (2001). https://doi.org/10.1097/00003086-200106000-00013

    Article  Google Scholar 

  8. Wang, C.-J., Huang, H.-Y., Chen, H.-H., Pai, C.-H., Yang, K.D.: Effect of shock wave therapy on acute fractures of the tibia: A study in a dog model. Clin. Orthop. Relat. Res. 387, 112–118 (2001). https://doi.org/10.1097/00003086-200106000-00015

    Article  Google Scholar 

  9. Cárcamo, J.J., Aliaga, A.E., Clavijo, E., Brañes, M., Campos-Vallette, M.M.: Raman and surface-enhanced Raman scattering in the study of human rotator cuff tissues after shock wave treatment. J. Raman Spectrosc. 43, 248–254 (2012). https://doi.org/10.1002/jrs.3019

    Article  Google Scholar 

  10. Albert, J.-D., Meadeb, J., Guggenbuhl, P., Marin, F., Benkalfate, T., Thomazeau, H., Chalès, G.: High-energy extracorporeal shock-wave therapy for calcifying tendinitis of the rotator cuff: a randomised trial. J. Bone Joint Surg. Br. 89, 335–341 (2007). https://doi.org/10.1302/0301-620X.89B3.18249

    Article  Google Scholar 

  11. Daecke, W., Kusnierczak, D., Loew, M.: Long-term effects of extracorporeal shockwave therapy in chronic calcific tendinitis of the shoulder. J. Shoulder Elb. Surg. 11, 476–480 (2002). https://doi.org/10.1067/mse.2002.126614

    Article  Google Scholar 

  12. Furia, J.P.: High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am. J. Sports Med. 34, 733–740 (2006). https://doi.org/10.1177/0363546505281810

    Article  Google Scholar 

  13. Ji, H.M., Kim, H.J., Han, S.J.: Extracorporeal shock wave therapy in myofascial pain syndrome of upper trapezius. Ann. Rehabil. Med. 36, 675–680 (2012). https://doi.org/10.5535/arm.2012.36.5.675

    Article  Google Scholar 

  14. Yalcin, E., Keskin Akca, A., Selcuk, B., Kurtaran, A., Akyuz, M.: Effects of extracorporeal shock wave therapy on symptomatic heel spurs: a correlation between clinical outcome and radiologic changes. Rheumatol. Int. 32, 343–347 (2012). https://doi.org/10.1007/s00296-010-1622-z

    Article  Google Scholar 

  15. Schaden, W., Thiele, R., Kölpl, C., Pusch, A.: Extracorporeal shock wave therapy (ESWT) in skin lesions. Int. Soc. Musculoskelet. Shockwave Ther. News 2, 13–14 (2006)

    Google Scholar 

  16. Weil Jr., L.S., Roukis, T.S., Weil Sr., L.S., Borrelli, A.H.: Extracorporeal shock wave therapy for the treatment of chronic plantar fasciitis: Indications, protocol, intermediate results, and a comparison of results to fasciotomy. J. Foot Ankle Surg. 41, 166–172 (2002). https://doi.org/10.1016/S1067-2516(02)80066-7

    Article  Google Scholar 

  17. Cheing, G.L., Chang, H.: Extracorporeal shock wave therapy. J. Orthop. Sports Phys. 33, 337–343 (2003). https://doi.org/10.2519/jospt.2003.33.6.337

    Article  Google Scholar 

  18. Lin, S.-Y., Li, M.-J., Cheng, W.-T.: FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. J. Spectrosc. 21, 1–30 (2007). https://doi.org/10.1155/2007/278765

    Article  Google Scholar 

  19. Bonifacio, A., Sergo, V.: Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib. Spectrosc. 53, 314–317 (2010). https://doi.org/10.1016/j.vibspec.2010.04.004

    Article  Google Scholar 

  20. Janko, M., Davydovskaya, P., Bauer, M., Zink, A., Stark, R.W.: Anisotropic Raman scattering in collagen bundles. Opt. Lett. 35, 2765–2767 (2010). https://doi.org/10.1364/OL.35.002765

    Article  Google Scholar 

  21. Frushour, B.G., Koenig, J.L.: Raman scattering of collagen, gelatin, and elastin. Biopolymers 14, 379–391 (1975). https://doi.org/10.1002/bip.1975.360140211

    Article  Google Scholar 

  22. Campos-Vallette, M.M., Rey-Lafon, M.: Vibrational spectra and rotational isomerism in short chain n-perfluoroalkanes. J. Mol. Struct. 101, 23–45 (1983). https://doi.org/10.1016/0022-2860(83)85041-8

    Article  Google Scholar 

  23. Spiro, T.G., Gaber, B.P.: Laser Raman scattering as a probe of protein structure. Ann. Rev. Biochem. 46, 553–572 (1977). https://doi.org/10.1146/annurev.bi.46.070177.003005

    Article  Google Scholar 

  24. Tu, A.T.: Laser Raman scattering as a probe of protein structure. In: Clark, R.J.H., Hester, R.E. (eds.) Advances in Infrared and Raman Spectroscopy, vol. 13, pp. 47–112. Wiley, London (1986)

    Google Scholar 

  25. Fratzl, P.: Collagen: Structure and mechanics, an introduction. In: Fratzl, P. (ed.) Collagen: Structure and Mechanics, pp. 1–13. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-73906-9_1

    Chapter  Google Scholar 

  26. Shoulders, M.D., Raines, R.T.: Collagen structure and stability. Ann. Rev. Biochem. 78, 929–958 (2009). https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  Google Scholar 

  27. Brinckmann, J.: Collagens at a glance. In: Brinckmann, J., Notbohm, H., Mueller, P.K. (eds.) Collagen: Primer in Structure, Processing and Assembly. Topics in Current Chemistry, vol. 247, pp. 1–6. Springer, Heidelberg (2005). https://doi.org/10.1007/b103817

    Chapter  Google Scholar 

  28. Bank, R.A., TeKoppele, J.M., Oostingh, G., Hazleman, B.L., Riley, G.P.: Lysylhydroxylation and non-reducible crosslinking of human supraspinatus tendon collagen: changes with age and in chronic rotator cuff tendinitis. Ann. Rheum. Dis. 58, 35–41 (1999). https://doi.org/10.1136/ard.58.1.35

    Article  Google Scholar 

  29. Bernard, C.: Tejido conectivo. In: Geneser, F. (ed.) Histología, Sobre Bases Moleculares, pp. 197–225. Editorial Médica Panamericana, Madrid (2000)

    Google Scholar 

  30. Aragno, I., Odetti, P., Altamura, F., Cavalleri, O., Rolandi, R.: Structure of rat tail tendon collagen examined by atomic force microscope. Experientia 51, 1063–1067 (1995). https://doi.org/10.1007/BF01946917

    Article  Google Scholar 

  31. Revenko, I., Sommer, F., Minh, D.T., Garrone, R., Franc, J.-M.: Atomic force microscopy study of the collagen fibre structure. Biol. Cell 80, 67–69 (1994). https://doi.org/10.1016/0248-4900(94)90019-1

    Article  Google Scholar 

  32. Taatjes, D.J., Quinn, A.S., Bovill, E.G.: Imaging of collagen type III in fluid by atomic force microscopy. Microsc. Res. Tech. 44, 347–352 (1999). https://doi.org/10.1002/(SICI)1097-0029(19990301)44:5%3C347::AID-JEMT5%3E3.0.CO;2-2

    Article  Google Scholar 

  33. Gullekson, C., Lucas, L., Hewitt, K., Kreplak, L.: Surface-sensitive Raman spectroscopy of collagen I fibrils. Biophys. J. 100, 1837–1845 (2011). https://doi.org/10.1016/j.bpj.2011.02.026

    Article  Google Scholar 

  34. Cárcamo, J.J., Aliaga, A.E., Clavijo, R.E., Brañes, M.R., Campos-Vallette, M.M.: Raman study of the shock wave effect on collagens. Spectrochim. Acta A 86, 360–365 (2012). https://doi.org/10.1016/j.saa.2011.10.049

    Article  Google Scholar 

  35. Perez, C., Chen, H., Matula, T.J., Karzova, M., Khokhlova, V.A.: Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device. J. Acoust. Soc. Am. 134, 1663–1674 (2013). https://doi.org/10.1121/1.4812885

    Article  Google Scholar 

  36. Aliaga, A.E., Osorio-Román, I., Leyton, P., Garrido, C., Cárcamo, J., Caniulef, C., Célis, F., Díaz, F.G., Clavijo, E., Gómez-Jeria, J.S., Campos-Vallette, M.M.: Surface-enhanced Raman scattering study of l-tryptophan. J. Raman Spectrosc. 40, 164–169 (2009). https://doi.org/10.1002/jrs.2099

    Article  Google Scholar 

  37. Aliaga, A.E., Osorio-Roman, I., Garrido, C., Leyton, P., Cárcamo, J., Clavijo, E., Gómez-Jeria, J.S., Díaz, F.G., Campos-Vallette, M.M.: Surface enhanced Raman scattering study of l-lysine. Vib. Spectrosc. 50, 131–135 (2009). https://doi.org/10.1016/j.vibspec.2008.09.018

    Article  Google Scholar 

  38. Diaz Fleming, G., Finnerty, J.J., Campos-Vallette, M., Célis, F., Aliaga, A.E., Fredes, C., Koch, R.: Experimental and theoretical Raman and surface-enhanced Raman scattering study of cysteine. J. Raman Spectrosc. 40, 632–638 (2009). https://doi.org/10.1002/jrs.2175

    Article  Google Scholar 

  39. Cárcamo, J.J., Aliaga, A.E., Clavijo, E., Garrido, C., Gómez-Jeria, J.S., Campos-Vallette, M.M.: Proline and hydroxyproline deposited on silver nanoparticles. A Raman, SERS and theoretical study. J. Raman Spectrosc. 43, 750–755 (2012). https://doi.org/10.1002/jrs.3092

    Article  Google Scholar 

  40. De Gelder, J., De Gussem, K., Vandenabeele, P., Moens, L.: Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007). https://doi.org/10.1002/jrs.1734

    Article  Google Scholar 

  41. Xu, J., Stangel, I., Butler, I.S., Gilson, D.F.R.: An FT-Raman spectroscopic investigation of dentin and collagen surfaces modified by 2-hydroxyethylmethacrylate. J. Dent. Res. 76, 596–601 (1997). https://doi.org/10.1177/00220345970760011101

    Article  Google Scholar 

  42. Lyng, F.M., Faoláin, E.Ó., Conroy, J., Meade, A.D., Knief, P., Duffy, B., Hunter, M.B., Byrne, J.M., Kelehan, P., Byrne, H.J.: Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. Exp. Mol. Pathol. 82, 121–129 (2007). https://doi.org/10.1016/j.yexmp.2007.01.001

    Article  Google Scholar 

  43. Cheng, W.T., Liu, M.T., Liu, H.N., Lin, S.Y.: Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc. Res. Tech. 68, 75–79 (2005). https://doi.org/10.1002/jemt.20229

    Article  Google Scholar 

  44. Herlinger, A.W., Long, T.V.: Laser-Raman and infrared spectra of amino acids and their metal complexes. III. Proline and bisprolinato complexes. J. Am. Chem. Soc. 92, 6481–6486 (1970). https://doi.org/10.1021/ja00725a016

    Article  Google Scholar 

  45. Wolpert, M., Hellwig, P.: Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm−1. Spectrochim. Acta A 64, 987–1001 (2006). https://doi.org/10.1016/j.saa.2005.08.025

    Article  Google Scholar 

  46. Rainey, J.K., Goh, M.C.: A statistically derived parameterization for the collagen triple-helix. Protein Sci. 11, 2748–2754 (2002). https://doi.org/10.1110/ps.0218502

    Article  Google Scholar 

  47. Gunn, J.S., Ehrlich, H.P.: Evidence that translocation of collagen fibril segments plays a role in early intrinsic tendon repair. Plast. Reconstr. Surg. 129, 300e–306e (2012). https://doi.org/10.1097/PRS.0b013e31823aeb5a

    Article  Google Scholar 

  48. Hazard, S.W., Myers, R.L., Ehrlich, H.P.: Demonstrating collagen tendon fibril segments involvement in intrinsic tendon repair. Exp. Mol. Pathol. 91, 660–663 (2011). https://doi.org/10.1016/j.yexmp.2011.08.002

    Article  Google Scholar 

  49. Svensson, R.B., Herchenhan, A., Starborg, T., Larsen, M., Kadler, K.E., Qvortrup, K., Magnusson, S.P.: Evidence of structurally continuous collagen fibrils in tendons. Acta Biomater. 50, 293–301 (2017). https://doi.org/10.1016/j.actbio.2017.01.006

    Article  Google Scholar 

Download references

Acknowledgements

Ricardo Aroca and Francisco Fernández are acknowledged for revision of the manuscript. This work was financially supported by the “Fondo Nacional de Desarrollo Científico y Tecnológico” (FONDECYT) of Chile (Project No. 11140262).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. J. Cárcamo-Vega or A. M. Loske.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Communicated by S. H. R. Hosano and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárcamo-Vega, J.J., Brañes, M.R., Loske, A.M. et al. The influence of the number of shock waves and the energy flux density on the Raman spectrum of collagen type I from rat. Shock Waves 30, 201–214 (2020). https://doi.org/10.1007/s00193-019-00920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00920-4

Keywords

Navigation