Skip to main content
Log in

Gaussian models for late-time evolution of two-dimensional shock–light cylindrical bubble interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Two-dimensional shock–bubble interaction is an analogy of the steady three-dimensional jet flow in a scramjet. On the basis of Navier–Stokes simulations, a cylindrical bubble embedded with hydrogen surrounded by air was accelerated by a shock. The evolution can be divided into the lobe-emergence stage, the back-lobe suction stage, and the equilibrium stage. Based on the inhomogeneity between the hydrogen mass fraction and the vorticity field, a correlation coefficient is proposed to quantitatively determine the starting moment of the equilibrium stage. In the equilibrium stage, quasi-Gaussian distributions are modeled for the mass fraction and the vorticity. Surface integrals are performed to derive corresponding mixedness and circulation models, both controlled by two statistical parameters (standard deviation and peak value). Such Gaussian integrated models are universal for different cylindrical bubble aspect ratios (\(\mathrm {AR}=0.5\)–2) and shock Mach numbers (\(M=1.22\)–2). They provide a statistical perspective of late-time SBI evolution in addition to the description from certain physical quantities and help better understand the compressible mixing of scramjet combustors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Meshkov, E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4(5), 101–104 (1969). https://doi.org/10.1007/bf01015969

    Article  Google Scholar 

  2. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960). https://doi.org/10.1002/cpa.3160130207

    Article  MathSciNet  Google Scholar 

  3. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011). https://doi.org/10.1146/annurev-fluid-122109-160744

    Article  MathSciNet  MATH  Google Scholar 

  4. Marble, F.E., Hendricks, G.J., Zukoski, E.E.: Progress toward shock enhancement of supersonic combustion processes. In: Borghi, R., Murthy, S.N.B. (eds.) Turbulent Reactive Flows. Lecture Notes in Engineering, vol 40. pp. 932–950. Springer, New York (1989). https://doi.org/10.1007/978-1-4613-9631-4_43

    Google Scholar 

  5. Yang, J., Kubota, T., Zukoski, E.E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31(5), 854–862 (1993). https://doi.org/10.2514/3.11696

    Article  Google Scholar 

  6. Picone, J., Boris, J.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988). https://doi.org/10.1017/S0022112088000904

    Article  Google Scholar 

  7. Yang, J., Kubota, T., Zukoski, E.E.: A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244 (1994). https://doi.org/10.1017/S0022112094003307

    Article  MATH  Google Scholar 

  8. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994). https://doi.org/10.1017/S0022112094001485

    Article  Google Scholar 

  9. Ray, J., Samtaney, R., Zabusky, N.J.: Shock interactions with heavy gaseous elliptic cylinders: Two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12(3), 707–716 (2000). https://doi.org/10.1063/1.870276

    Article  MATH  Google Scholar 

  10. Niederhaus, J.H., Greenough, J., Oakley, J., Ranjan, D., Anderson, M., Bonazza, R.: A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85–124 (2008). https://doi.org/10.1017/S0022112007008749

    Article  MATH  Google Scholar 

  11. Zhang, W., Zou, L., Zheng, X., Wang, B.: Numerical study on the interaction of a weak shock wave with an elliptic gas cylinder. Shock Waves 29, 273–284 (2019). https://doi.org/10.1007/s00193-018-0828-y

    Article  Google Scholar 

  12. Li, D., Wang, G., Guan, B.: On the circulation prediction of shock-accelerated elliptical heavy gas cylinders. Phys. Fluids 31(5), 056104 (2019). https://doi.org/10.1063/1.5090370

    Article  Google Scholar 

  13. Giordano, J., Burtschell, Y.: Richtmyer–Meshkov instability induced by shock–bubble interaction: Numerical and analytical studies with experimental validation. Phys. Fluids 18(3), 036102 (2006). https://doi.org/10.1063/1.2185685

    Article  Google Scholar 

  14. Kumar, S., Orlicz, G., Tomkins, C., Goodenough, C., Prestridge, K., Vorobieff, P., Benjamin, R.: Stretching of material lines in shock-accelerated gaseous flows. Phys. Fluids 17(8), 082107 (2005). https://doi.org/10.1063/1.2031347

    Article  MATH  Google Scholar 

  15. Jacobs, J.W.: Shock-induced mixing of a light-gas cylinder. J. Fluid Mech. 234, 629–649 (1992). https://doi.org/10.1017/S0022112092000946

    Article  Google Scholar 

  16. Tomkins, C., Kumar, S., Orlicz, G., Prestridge, K.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008). https://doi.org/10.1017/s0022112008002723

    Article  MATH  Google Scholar 

  17. Shankar, S.K., Kawai, S., Lele, S.K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23(2), 024102 (2011). https://doi.org/10.1063/1.3553282

    Article  Google Scholar 

  18. Cetegen, B.M., Mohamad, N.: Experiments on liquid mixing and reaction in a vortex. J. Fluid Mech. 249, 391–414 (1993). https://doi.org/10.1017/S0022112093001223

    Article  Google Scholar 

  19. Verzicco, R., Orlandi, P.: Mixedness in the formation of a vortex ring. Phys. Fluids 7(6), 1513–1515 (1995). https://doi.org/10.1063/1.868538

    Article  MATH  Google Scholar 

  20. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006). https://doi.org/10.1016/j.jcp.2006.04.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Hejazialhosseini, B., Rossinelli, D., Bergdorf, M., Koumoutsakos, P.: High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock–bubble interactions. J. Comput. Phys. 229(22), 8364–8383 (2010). https://doi.org/10.1016/j.jcp.2010.07.021

    Article  MATH  Google Scholar 

  22. Houim, R.W., Kuo, K.K.: A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios. J. Comput. Phys. 230(23), 8527–8553 (2011). https://doi.org/10.1016/j.jcp.2011.07.031

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodriguez, M., Johnsen, E., Powell, K.: A high-order accurate AUSM\(^+\)-up approach for simulations of compressible multiphase flows with linear viscoelasticity. Shock Waves 29, 717–734 (2019). https://doi.org/10.1007/s00193-018-0884-3

    Article  Google Scholar 

  24. Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987). https://doi.org/10.1017/S0022112087002003

    Article  Google Scholar 

  25. Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91(17), 174502 (2003). https://doi.org/10.1103/physrevlett.91.174502

    Article  Google Scholar 

  26. Layes, G., Jourdan, G., Houas, L.: Experimental investigation of the shock wave interaction with a spherical gas inhomogeneity. Phys. Fluids 17(2), 028103 (2005). https://doi.org/10.1063/1.1847111

    Article  MATH  Google Scholar 

  27. Ranjan, D., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett. 94(18), 184507 (2005). https://doi.org/10.1103/PhysRevLett.94.184507

    Article  Google Scholar 

  28. Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock–bubble interaction. Phys. Rev. Lett. 98(2), 024502 (2007). https://doi.org/10.1103/PhysRevLett.98.024502

    Article  Google Scholar 

  29. Bai, J.S., Zou, L.Y., Wang, T., Liu, K., Huang, W.B., Liu, J.H., Li, P., Tan, D.W., Liu, C.L.: Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys. Rev. E 82(5), 056318 (2010). https://doi.org/10.1103/PhysRevE.82.056318

    Article  Google Scholar 

  30. Zou, L., Liu, C., Tan, D., Huang, W., Luo, X.: On interaction of shock wave with elliptic gas cylinder. J. Vis. 13(4), 347–353 (2010). https://doi.org/10.1007/s12650-010-0053-y

    Article  Google Scholar 

  31. Wang, M., Si, T., Luo, X.: Experimental study on the interaction of planar shock wave with polygonal helium cylinders. Shock Waves 25(4), 347–355 (2015). https://doi.org/10.1007/s00193-014-0528-1

    Article  Google Scholar 

  32. Si, T., Long, T., Zhai, Z., Luo, X.: Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225–251 (2015). https://doi.org/10.1017/jfm.2015.581

    Article  Google Scholar 

  33. Bagabir, A., Drikakis, D.: Mach number effects on shock–bubble interaction. Shock Waves 11(3), 209–218 (2001). https://doi.org/10.1007/pl00004076

    Article  MATH  Google Scholar 

  34. Billet, G., Giovangigli, V., De Gassowski, G.: Impact of volume viscosity on a shock–hydrogen-bubble interaction. Combust. Theor. Model. 12(2), 221–248 (2008). https://doi.org/10.1080/13647830701545875

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhai, Z., Wang, M., Si, T., Luo, X.: On the interaction of a planar shock with a light polygonal interface. J. Fluid Mech. 757, 800–816 (2014). https://doi.org/10.1017/jfm.2014.516

    Article  Google Scholar 

  36. Jie, Y., Zhen-Hua, W., Bo-Fu, W., De-Jun, S.: Numerical simulation of shock bubble interaction with different Mach numbers. Chin. Phys. Lett. 32(3), 034701 (2015). https://doi.org/10.1088/0256-307X/32/3/034701

    Article  Google Scholar 

  37. Georgievskiy, P.Y., Levin, V., Sutyrin, O.: Interaction of a shock with elliptical gas bubbles. Shock Waves 25(4), 357–369 (2015). https://doi.org/10.1007/s00193-015-0557-4

    Article  Google Scholar 

  38. Ding, J., Si, T., Chen, M., Zhai, Z., Lu, X., Luo, X.: On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017). https://doi.org/10.1017/jfm.2017.528

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Yu, B., Chen, H., Zhang, B., Liu, H.: Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Phys. Fluids 30(12), 126103 (2018). https://doi.org/10.1063/1.5051463

    Article  Google Scholar 

  40. Sembian, S., Liverts, M., Apazidis, N.: Plane blast wave interaction with an elongated straight and inclined heat-generated inhomogeneity. J. Fluid Mech. 851, 245–267 (2018). https://doi.org/10.1017/jfm.2018.495

    Article  MathSciNet  MATH  Google Scholar 

  41. Jin, J., Deng, X., Abe, Y., Xiao, F.: Uncertainty quantification of shock–bubble interaction simulations. Shock Waves (2019). https://doi.org/10.1007/s00193-019-00893-4

    Article  Google Scholar 

  42. Michael, L., Nikiforakis, N.: The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case. Shock Waves 29(1), 153–172 (2019). https://doi.org/10.1007/s00193-018-0802-8

    Article  Google Scholar 

  43. Michael, L., Nikiforakis, N.: The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: reactive case. Shock Waves 29(1), 173–191 (2019). https://doi.org/10.1007/s00193-018-0803-7

    Article  Google Scholar 

  44. Brouillette, M.: The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34(1), 445–468 (2002). https://doi.org/10.1146/annurev.fluid.34.090101.162238

    Article  MathSciNet  MATH  Google Scholar 

  45. Vorobieff, P., Kumar, S.: Experimental studies of Richtmyer–Meshkov instability. In: Recent Research Developments in Fluid Dynamics, vol. 5 pp. 33–55. Transworld Research Network (2004)

  46. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720, 1–136 (2017). https://doi.org/10.1016/j.physrep.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, Y.: Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1–160 (2017). https://doi.org/10.1016/j.physrep.2017.07.008

    Article  MathSciNet  MATH  Google Scholar 

  48. Kee, R.J., Rupley, F.M., Meeks, E., Miller, J.A.: CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gasphase Chemical and Plasma Kinetics. Sandia National Laboratories Report SAND-96-8216, Livermore, CA (1996). https://doi.org/10.2172/481621

  49. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley, Hoboken (2005). https://doi.org/10.1002/0471461296

    Book  Google Scholar 

  50. Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms, vol. 24. Springer, Berlin (1994). https://doi.org/10.1007/978-3-540-48650-3

    Book  MATH  Google Scholar 

  51. Svehla, R.A.: Estimated viscosities and thermal conductivities of gases at high temperatures NASA-TR-R-132, NASA Lewis Research Center (1962)

  52. Dimotakis, P.E.: Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005). https://doi.org/10.1146/annurev.fluid.36.050802.122015

    Article  MathSciNet  MATH  Google Scholar 

  53. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994). https://doi.org/10.1006/jcph.1994.1187

    Article  MathSciNet  MATH  Google Scholar 

  54. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(1–2), 125–135 (2003). https://doi.org/10.1016/s0378-4754(02)00179-9

    Article  MathSciNet  MATH  Google Scholar 

  55. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–reaction problems. J. Comput. Phys. 201(1), 61–79 (2004). https://doi.org/10.1016/j.jcp.2004.05.002

    Article  MathSciNet  MATH  Google Scholar 

  56. Marble, F.E.: Growth of a diffusion flame in the field of a vortex. In: Casci, C., Bruno, C. (eds.) Recent Advances in the Aerospace Sciences, pp. 395–413. Springer, Boston (1985). https://doi.org/10.1007/978-1-4684-4298-4_19

    Chapter  Google Scholar 

  57. Meunier, P., Villermaux, E.: How vortices mix. J. Fluid Mech. 476, 213–222 (2003). https://doi.org/10.1017/S0022112002003166

    Article  MathSciNet  MATH  Google Scholar 

  58. Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  59. McFarland, J.A., Reilly, D., Black, W., Greenough, J.A., Ranjan, D.: Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability. Phys. Rev. E 92(1), 013023 (2015). https://doi.org/10.1103/PhysRevE.92.013023

    Article  MathSciNet  Google Scholar 

  60. Akula, B., Ranjan, D.: Dynamics of buoyancy-driven flows at moderately high Atwood numbers. J. Fluid Mech. 795, 313–355 (2016). https://doi.org/10.1017/jfm.2016.199

    Article  MathSciNet  MATH  Google Scholar 

  61. Thornber, B., Griffond, J., Poujade, O., Attal, N., Varshochi, H., Bigdelou, P., Ramaprabhu, P., Olson, B., Greenough, J., Zhou, Y., et al.: Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The \(\theta \)-group collaboration. Phys. Fluids 29(10), 105107 (2017). https://doi.org/10.1063/1.4993464

    Article  Google Scholar 

  62. McFarland, J.A., Greenough, J.A., Ranjan, D.: Simulations and analysis of the reshocked inclined interface Richtmyer–Meshkov instability for linear and nonlinear interface perturbations. J. Fluids Eng. 136(7), 071203 (2014). https://doi.org/10.1115/1.4026858

    Article  Google Scholar 

  63. Lora-Clavijo, F., Cruz-Pérez, J., Siddhartha Guzmán, F., González, J.: Exact solution of the 1D riemann problem in Newtonian and relativistic hydrodynamics. Revista mexicana de física E 59(1), 28–50 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the center of High Performance Computing of SJTU for its high-performance computer \(\pi \). This work is supported by the National Science Foundation for Young Scientists of China (Grant No. 51606120). The authors also thank the three reviewers and the editor for their constructive advice. The first author thanks Jun Li, Hanhan Zhu, Haochen Liu, Jun Cheng, Chengcheng Liu, and Mingyun Xie for their contributions to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zhang.

Additional information

Communicated by R. Bonazza and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z., Yu, B. et al. Gaussian models for late-time evolution of two-dimensional shock–light cylindrical bubble interaction. Shock Waves 30, 169–184 (2020). https://doi.org/10.1007/s00193-019-00928-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00928-w

Keywords

Navigation