Skip to main content
Log in

New inertial factors of the Krasnosel’skiı̆-Mann iteration

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We consider inertial iterative schemes for approximating a fixed point of any given non-expansive operator in real Hilbert spaces. We provide new conditions on the inertial factors that ensure weak convergence and depend only on the iteration coefficients. For the special case of the Douglas-Rachford splitting, the conditions boil down to a sufficiently small upper bound on the sequence of inertial factors. Rudimentary numerical results indicate practical usefulness of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Var. Anal. 9(1), 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  2. Alves, M., Marcavillaca, R.: On inexact relative-error hybrid proximal extragradient, forward-backward and Tseng’s modified forward-backward methods with inertial effects. Set-Valued Var. Anal. https://doi.org/10.1007/s11228-019-00510-7(2019)

  3. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone operators, Math Program. https://doi.org/10.1007/s10107-019-01412-0

  4. Aubin, J. P., Ekeland, I.: Applied nonlinear analysis, Interscience publications. Wiley, New York (1984)

    MATH  Google Scholar 

  5. Brézis, H., Lions, P. L.: Produits infinis de resolvantes. Israel J. Math. 29, 329–345 (1978)

    Article  MathSciNet  Google Scholar 

  6. Cabot, A., Frankel, P.: Asymptotics for some proximal-like method involving inertia and memory aspects. Set-Valued Var. Anal. 19, 59–74 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bot, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256(1), 472–487 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42–54 (1980)

    Article  MathSciNet  Google Scholar 

  9. Dong, Q. L., Cho, Y. J., Zhong, L. L., Rassias, T.H.M.: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70(3), 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dong, Y. D.: The proximal point algorithm revisited. J. Optim. Theory Appl. 161, 478–489 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dong, Y. D.: Comments on ``the proximal point algorithm revisited”. J. Optim. Theory Appl. 166, 343–349 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dong, Y. D.: Douglas-Rachford splitting method for semi-definite programming. J. Appl. Math. Comput. 51, 569–591 (2016)

    Article  MathSciNet  Google Scholar 

  13. Dong, Y. D., Fang, B. B., Wang, X.Y.: New inertial factors of a splitting method for monotone inclusions, preprint. Avialable at http://www.optimization-online.org/DBFILE/2018/04/6576.pdf (2018)

  14. Dong, Y. D., Fischer, A.: A family of operator splitting methods revisited. Nonlinear Anal. 72, 4307–4315 (2010)

    Article  MathSciNet  Google Scholar 

  15. Dong, Y. D., Yu, X. H.: A new splitting method for monotone inclusions of three operators. Calcolo. 56, 3 (2019)

    Article  MathSciNet  Google Scholar 

  16. Douglas, J., Rachford, H. H.: On the numerical solution of the heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  17. Eckstein, J., Bertsekas, D. P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  18. Gol’shtein, E. G., Tret’yakov, N.V.: Modified Lagrangians in convex programming and their generalizations. Math. Program. Study. 10, 86–97 (1979)

    Article  MathSciNet  Google Scholar 

  19. Groetsch, C. W.: A note on segmenting Mann iterates. J. Math. Anal. Appl. 40 (2), 369–372 (1972)

    Article  MathSciNet  Google Scholar 

  20. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  Google Scholar 

  21. Ishikawa, S.: Fixed points by a new iteration. Proc. Amer. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  Google Scholar 

  22. Kanzow, C., Shehu, Y.: Generalized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput. Optim. Appl. 67(3), 595–620 (2017)

    Article  MathSciNet  Google Scholar 

  23. Krasnosel’skiı̆, M.A.: Two remarks on the method of successive approximations. Uspekhi. Mat. Nauk. 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  24. Lions, P. L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  25. Lawrence, J., Spingarn, J. E.: On fixed points of non-expansive piecewise isometric mappings. P. Lond. Math. Soc. 55, 605–624 (1987)

    Article  Google Scholar 

  26. Maingé, P.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  27. Mann, W. R.: Mean value methods in iteration. Bull. Am. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  28. Martinet, B.: Regularisation d’inéquations variationelles par approximations successives. Rev Fr d’Informatique Recherche Opér 4, 154–158 (1970)

    MATH  Google Scholar 

  29. Matsushita, S. Y.: On the convergence rate of the Krasnosel’skiı̆-Mann iteration. B. Austr. Math. Soc. 96(1), 162–170 (2017)

    Article  Google Scholar 

  30. Minty, G. J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  31. Minty, G. J.: On the monotonicity of the gradient of a convex function. Pac. J. Math. 14, 243–247 (1964)

    Article  MathSciNet  Google Scholar 

  32. Pazy, A.: Asymptotic behavior of contractions in Hilbert space. Israel J. Math. 9, 235–240 (1971)

    Article  MathSciNet  Google Scholar 

  33. Peaceman, D., Rachford, H. H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  Google Scholar 

  34. Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  35. Thong, D. V., Hieu, D. V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to the associate editor and two referees for their insightful comments and constructive suggestions. Special thanks go to Xiao Zhu for her help in doing numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunda Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Below we give a short proof of Lemma 3.2 for completeness. Note that we no longer follow [7] to introduce the factor ρk there.

Proof

Rewrite (2) as

$$ \begin{array}{@{}rcl@{}} y_{k}&=&x_{k}+t_{k}(x_{k}-x_{k-1}), \end{array} $$
(29)
$$ \begin{array}{@{}rcl@{}} x_{k+1}&=&(1-\alpha_{k}) y_{k}+\alpha_{k} T(y_{k}), k=0,1,.... \end{array} $$
(30)

Since z is a fixed point of T, i.e., T(z) = z, it follows from (30) that

$$ x_{k+1}-z=\alpha_{k} (T(y_{k})-T(z))+(1-\alpha_{k}) (y_{k}-z). $$

Combing this with the following well-known identity [21]

$$ \|\alpha u+(1-\alpha)v\|^{2}=\alpha\|u\|^{2}+(1-\alpha)\|v\|^{2} -\alpha(1-\alpha)\|u-v\|^{2}, \forall u, v\in \mathcal{H} $$

for all real number α yields

$$ \begin{array}{@{}rcl@{}} &&\|x_{k+1}-z\|^{2}\\ &=&\|\alpha_{k} (T(y_{k})-T(z))+(1-\alpha_{k}) (y_{k}-z)\|^{2}\\ &=&\alpha_{k}\|T(y_{k})-T(z)\|^{2}+(1-\alpha_{k})\|y_{k}-z\|^{2}-\alpha_{k}(1-\alpha_{k}) \|T(y_{k})-y_{k}\|^{2}\\ &\leq&\alpha_{k}\|y_{k}-z\|^{2}+(1-\alpha_{k})\|y_{k}-z\|^{2}-\alpha_{k}(1-\alpha_{k}) \|T(y_{k})-y_{k}\|^{2}\\ &=&\|y_{k}-z\|^{2}-\alpha_{k}(1-\alpha_{k}) \|T(y_{k})-y_{k}\|^{2}, \end{array} $$
(31)

where the inequality follows from that T is non-expansive.

In view of the identity above and (29), we have

$$ \begin{array}{@{}rcl@{}} \|y_{k}-z\|^{2}&=&\|(1+t_{k})(x_{k}-z)-t_{k}(x_{k-1}-z)\|^{2}\\ &=&(1+t_{k})\|x_{k}-z\|^{2}-t_{k}\|x_{k-1}-z\|^{2}+(1+t_{k})t_{k} \|x_{k}-x_{k-1}\|^{2}. \end{array} $$

On the other hand, it is easy to see that

$$ \begin{array}{@{}rcl@{}} &&\|T(y_{k})-y_{k}\|^{2}\\ &=& \frac{1}{{\alpha_{k}^{2}}}\|(x_{k+1}-x_{k})-t_{k}(x_{k}-x_{k-1})\|^{2}\\ &=& \frac{1}{{\alpha_{k}^{2}}}\|x_{k+1}-x_{k}\|^{2}+\frac{{t_{k}^{2}}}{{\alpha_{k}^{2}}}\|x_{k}-x_{k-1}\|^{2} -2\frac{t_{k}}{{\alpha_{k}^{2}}}\langle x_{k+1}-x_{k}, x_{k}-x_{k-1}\rangle\\ &\geq& \frac{1}{{\alpha_{k}^{2}}}\|x_{k+1}-x_{k}\|^{2}+\frac{{t_{k}^{2}}}{{\alpha_{k}^{2}}}\|x_{k}-x_{k-1}\|^{2} -\frac{t_{k}}{{\alpha_{k}^{2}}}\left( \|x_{k+1}-x_{k}\|^{2}+\|x_{k}-x_{k-1}\|^{2}\right)\\ &=& \frac{1}{{\alpha_{k}^{2}}}(1-t_{k})\|x_{k+1}-x_{k}\|^{2} +\frac{1}{{\alpha_{k}^{2}}}({t_{k}^{2}}-t_{k})\|x_{k}-x_{k-1}\|^{2}. \end{array} $$
(32)

Finally, making use of these two relations to bound (31) yields the desired results. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y. New inertial factors of the Krasnosel’skiı̆-Mann iteration. Set-Valued Var. Anal 29, 145–161 (2021). https://doi.org/10.1007/s11228-020-00541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-020-00541-5

Keywords

Mathematics Subject Classification (2010)

Navigation