Skip to main content
Log in

A Global Linear and Local Superlinear (Quadratic) Inexact Non-Interior Continuation Method for Variational Inequalities Over General Closed Convex Sets

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We use the concept of barrier-based smoothing approximations to extend the non-interior continuation method, which was proposed by B. Chen and N. Xiu for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions, to an inexact non-interior continuation method for variational inequalities over general closed convex sets. Newton equations involved in the method are solved inexactly to deal with high dimension problems. The method is proved to have global linear and local superlinear/quadratic convergence under suitable assumptions. We apply the method to non-negative orthants, positive semidefinite cones, polyhedral sets, epigraphs of matrix operator norm cone and epigraphs of matrix nuclear norm cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Z.-Z., Golub, G.H., Lu, L.-Zh., Yin, J.-F.: Block triangular and skew-hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26(3), 844–863 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z-Z., Golub, G. H., Ng, M. K.: Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bellavia, S., Morini, B.: A globally convergent newton-gmres subspace method for systems of nonlinear equations. SIAM J. Sci. Comput. 23(3), 940–960 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bhatia, R.: Matrix analysis. Springer, Berlin (1997)

  5. Brown, P. N., Saad, Y.: Hybrid krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990)

    Article  MathSciNet  Google Scholar 

  6. Burke, J., Xu, S.: The global linear convergence of a noninterior path-following algorithm for linear complementarity problem. Math. Oper. Res. 23, 719–734 (1998)

    Article  MathSciNet  Google Scholar 

  7. Chen, B., Harker, P. T.: A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl. 14(4), 1168–1190 (1993)

    Article  MathSciNet  Google Scholar 

  8. Chen, B., Harker, P. T.: A continuation method for monotone variational inequalities. Math. Program. 69(1), 237–253 (1995)

    Article  MathSciNet  Google Scholar 

  9. Chen, B., Xiu, N.: A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9(3), 605–623 (1999)

    Article  MathSciNet  Google Scholar 

  10. Chen, C., Mangasarian, O. L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5(2), 97–138 (1996)

    Article  MathSciNet  Google Scholar 

  11. Chen, C. H.: Numerical Algorithms for a Class of Matrix Norm Approximation Problems. PhD thesis, Nanjing University (2012)

  12. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing newton method and its application to general box constrained variational inequalities. Math. Comput. 67(222), 519–540 (1998)

    Article  MathSciNet  Google Scholar 

  13. Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Program. 95(3), 431–474 (2003)

    Article  MathSciNet  Google Scholar 

  14. Chen, X. J., Ye, Y.: On homotopy-smoothing methods for box-constrained variational inequalities. SIAM J. Control Optim. 37(2), 589–616 (1999)

    Article  MathSciNet  Google Scholar 

  15. Chua, C. B., Hien, L. T. K.: A superlinearly convergent smoothing newton continuation algorithm for variational inequalities over definable sets. SIAM J. Optim. 25(2), 1034–1063 (2015)

    Article  MathSciNet  Google Scholar 

  16. Chua, C. B., Li, Z.: A barrier-based smoothing proximal point algorithm for NCPsover closed convex cones. SIAM J. Optim. 23(2), 745–769 (2013)

    Article  MathSciNet  Google Scholar 

  17. Chua, C. B., Yi, P.: A continuation method for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 20, 2560–2583 (2010)

    Article  MathSciNet  Google Scholar 

  18. de Sá, E.: Faces of the unit ball of a unitarily invariant norm. Linear Algebra Appl. 197,198, 451–493 (1994)

    Article  MathSciNet  Google Scholar 

  19. Dembo, R. S., Eisenstat, S. C., Steihaug, T.: On newton-like methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  20. Dennis, J. E. Jr: On newton-like methods. Numer. Math. 11(4), 324–330 (1968)

    Article  MathSciNet  Google Scholar 

  21. Ding, C., Sun, D., Toh, K.-Ch.: An introduction to a class of matrix cone programming. Math. Program. 144(1-2), 141–179 (2014)

    Article  MathSciNet  Google Scholar 

  22. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  23. Facchinei, F., Pang, J. -S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  24. Gabriel, S. A., Moré, J.J.: Smoothing of mixed complementarity problems (1995)

  25. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17(4), 851–868 (1996)

    Article  MathSciNet  Google Scholar 

  26. Knoll, D. A., Keyes, D. E.: Jacobian-free newton–krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  Google Scholar 

  27. Li, D., Fukushima, M.: Smoothing newton and quasi-newton methods for mixed complementarity problems. Comput. Optim. Appl. 17(2), 203–230 (2000)

    Article  MathSciNet  Google Scholar 

  28. Nesterov, Y.E., Nemirovski, A. S.: Interior Point Polynomial Algorithms in Convex Programming. SIAM Stud. Appl. Math. SIAM Publication, Philadelphia (1994)

    Book  Google Scholar 

  29. Pang, J.-S.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15(2), 311–341 (1990)

    Article  MathSciNet  Google Scholar 

  30. Pang, J. S.: A B-differentiable equation based, globally, and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems. Math. Program. 51, 101–131 (1991)

    Article  MathSciNet  Google Scholar 

  31. Pataki, G., Tunċel, L.: On the generic properties of convex optimization problems in conic form. Math. Program. 89(3), 449–457 (2001)

    Article  MathSciNet  Google Scholar 

  32. Pernice, M., Walker, H. F.: Nitsol: A newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19(1), 302–318 (1998)

    Article  MathSciNet  Google Scholar 

  33. Qi, L., Sun, D.: Smoothing functions and smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113(1), 121–147 (2002)

    Article  MathSciNet  Google Scholar 

  34. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1-3), 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  35. Ralph, D.: Global convergence of damped Newton’s method for nonsmooth equations, via the path search. Math. Oper. Res. 19, 352–389 (1994)

    Article  MathSciNet  Google Scholar 

  36. Saad, Y., Schultz, M. H.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  37. Stoer, J.: Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods, pp 540–565. Springer, Berlin (1983)

    MATH  Google Scholar 

  38. Xu, S.: The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform p-functions. Math. Program. 87 (3), 501–517 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their meticulous and insightful comments, which help us improve the paper. LTKH gives special thanks to Prof. Nicolas Gillis for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Thi Khanh Hien.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Technical proofs

1.1 A.1 Proof of Proposition 3

(i) From Eq. 9 we get

$$\left\lVert {\triangle \tilde{w}^{(k)}} \right\rVert \leq C (\left\lVert {H_{\mu_{k}}(w^{(k)})} \right\rVert + \left\lVert {r_{1}^{(k)}} \right\rVert) \leq C(1+\theta_{1}) {\Psi}_{\mu_{k}}(w^{(k)}) \leq C(1+\theta_{1})\upbeta \mu_{k}. $$

(ii) We have

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} \left\lVert { H_{0}(w^{(k)})} \right\rVert - {\Psi}_{\mu_{k}}(w^{(k)})& \leq \left\lVert {\phi_{0}(w^{(k)})} \right\rVert - \left\lVert {\phi_{\mu_{k}}(w^{(k)})} \right\rVert\\ & \leq \left\lVert {\phi_{0}(w^{(k)}) - \phi_{\mu_{k}}(w^{(k)})} \right\rVert\\ & = \left\lVert {p_{0}(x^{(k)}-y^{(k)}) - p_{\mu_{k}}(x^{(k)}-y^{(k)})} \right\rVert \leq \sqrt{\vartheta} \mu_{k}, \end{array} \end{array} $$
(48)

where we have used the property \(\left \lVert {(a,b)} \right \rVert \leq \left \lVert {a} \right \rVert + \left \lVert {b} \right \rVert \) for the first inequality and Theorem 1 for the last inequality. Inequality (48) with (11) give us

$$ \begin{array}{@{}rcl@{}} \|\triangle \hat{w}\|& \leq C (\left\lVert { H_{0}(w^{(k)})} \right\rVert + \left\lVert {r_{2}^{(k)}} \right\rVert) \leq C(1+\theta_{2})({\Psi}_{\mu_{k}}(w^{(k)}) + \sqrt{\vartheta}\mu_{k} )\\ &\leq C(1+\theta_{2})(\upbeta + \sqrt{\vartheta}) \mu_{k}. \end{array} $$

1.2 A.2 Proof of Theorem 5

1.2.1 A.2.1 Non-negative orthant \(\mathbb {R}^{n}_{+}\)

Gradient and Hessian of the barrier function are

$$ \nabla f(x)= -\sum\limits_{i=1}^{n}\frac{1}{x_{i}} e_{i}, \quad \nabla^{2} f(x) = \sum\limits_{i=1}^{n} \frac{1}{{x_{i}^{2}}} e_{i} {e_{i}^{T}}, $$

where ei denote the i −th standard unit vector of \(\mathbb {R}^{n}\). The corresponding barrier-based smoothing approximation is \(p_{\mu }(z)=\frac {1}{2}\sum \limits _{i=1}^{n}\left ({z_{i}+ \sqrt {{z_{i}^{2}} + 4\mu ^{2}}}\right ) e_{i}\). Its Jacobian is

$$\text{\textbf{J}} p_{\mu}(z)= \frac{1}{2}\textup{Diag}\left( 1 + \frac{z_{i}}{\sqrt{{z_{i}^{2}} + 4\mu^{2}}}|_{i=1,\ldots,n}\right).$$

The projection of z onto \(\mathbb {R}^{n}_{+}\) is \({\Pi }_{\mathbb {R}^{n}_{+}}(z)=[z]_{+}\). We observe that the projector is differentiable at z if and only if \(z_{i}^{*}\ne 0, \forall i=1,\ldots ,n\). On the other hand, a pair (x,y) is strictly complimentary if and only if \(x_{i}^{*}+y_{i}^{*} >0\) for all i = 1,…,n, see [9]. Furthermore, \(x^{*}+y^{*}={\Pi }_{\mathbb {R}^{n}_{+}}(z^{*})+{\Pi }_{\mathbb {R}^{n}_{+}}(-z^{*})\). Hence, it is easy to see that differentiability of the projector at z is equivalent to strict complimentarity of (x,y).

Now let \(z_{i}^{*}\ne 0\) for i = 1,…,n, then we observe that the Jacobian Jpμ(z) converges to

$$\text{\textbf{J}} {\Pi}_{\mathbb{R}^{n}_{+}}(z^{*})=\frac{1}{2}\textup{Diag}\left( 1 + \frac{z_{i}^{*}}{|z_{i}^{*}|}|_{i=1,\ldots,n}\right)$$

when \((z,\mu )\rightarrow (z^{*},0)\). Since the map (z,μ)↦Jpμ(z) is continuously differentiable at (z,0), thus is locally Lipschitz at this point. Consequently, \(\left \lVert {\text {\textbf {J}} p_{\mu }(z)-T^{*}}\right \rVert = O(\left \lVert {(z-z^{*},\mu )}\right \rVert )\). On the other hand, \(\left \lVert {\textup {D} p_{\mu }(z)-\textup {D} {\Pi }_{\mathbb {R}^{n}_{+}}(z^{*})}\right \rVert =\left \lVert {\text {\textbf {J}} p_{\mu }(z)-\text {\textbf {J}} {\Pi }_{\mathbb {R}^{n}_{+}}(z^{*})}\right \rVert \). Thus, we get the result.

1.2.2 A.2.2 Positive semidefinite cone \(\mathbb {S}_{+}^{n}\)

We have ∇f(x) = −x− 1.

From the equation x + μ2f(x) = z, we deduce that the corresponding barrier-based smoothing approximation is

$$ p_{\mu}(z)=\frac{1}{2}\left( z+ (z^{2} + 4\mu^{2} I)^{1/2}\right). $$

Denote \(\mathfrak {g}: u\in \mathbb {R} \mapsto \mathfrak {g}(u)= u+ \sqrt {u^{2} + 4\mu ^{2}}\), \(\mathfrak {g}^{\prime }(u)=1+ \frac {u}{\sqrt {u^{2} + 4\mu ^{2}}}\) and \(\mathfrak {g}^{(1)}\) is a matrix whose (i,j)-th entry with respect to a vector d is

$$ \begin{array}{@{}rcl@{}} (\mathfrak{g}^{(1)}(d))_{ij}&=&\left\{ \begin{array}{ll} \frac{\mathfrak{g}(d_{i})-\mathfrak{g}(d_{j})}{d_{i} - d_{j}} &\text{if} d_{i}\ne d_{j}\\ \mathfrak{g}^{\prime}(d_{i}) & \text{if} d_{i} = d_{j} \end{array} \right.\\ & =& \left\{ \begin{array}{ll}1+ \frac{\sqrt{{d_{i}^{2}} + 4\mu^{2}} - \sqrt{{d_{j}^{2}} + 4\mu^{2}}}{d_{i} - d_{j}} &\text{if} d_{i}\ne d_{j}\\ 1+ \frac{d_{i}}{\sqrt{{d_{i}^{2}} + 4\mu^{2}}} & \text{if} d_{i} = d_{j} \end{array}\right.\\ & = &1+\frac{d_{i} + d_{j}}{\sqrt{{d_{i}^{2}} + 4\mu^{2}} + \sqrt{{d_{j}^{2}} + 4\mu^{2}}}. \end{array} $$

Let z = q Diag(λf(z))qT, then \(\textup {D} p_{\mu }(z)[h]= \frac {1}{2} q \left [ \mathfrak {g}^{(1)} (\lambda _{f}(z)) \circ (q^{T} h q)\right ] q^{T}. \) Projection of z onto \(\mathbb {S}^{n}_{+}\) is \({\Pi }_{\mathbb {S}^{n}_{+}}(z)=q\textup {Diag}\left ({[\lambda _{f}(z)]_{+}} \right )q^{T}\). We see that \({\Pi }_{\mathbb {S}^{n}_{+}}(\cdot )\) is differentiable at z if and only if all eigenvalues \(\lambda _{i}^{*}\), for i = 1,…,n, of z are non-zeroes. Furthermore, strict complementarity of (x,y) is equivalent to the condition that all eigenvalues of x + y is positive. We now let \(z^{*}=\hat {q}\textup {Diag}(\lambda _{f}(z^{*})) \hat {q}^{T} \) be the eigenvalue decomposition of z. Then,

$$ \begin{array}{@{}rcl@{}} x^{*}+y^{*}&=&{\Pi}_{\mathbb{S}^{n}_{+}}(z^{*})+ {\Pi}_{\mathbb{S}^{n}_{+}}(-z*)\\ &=&\hat{q}\textup{Diag}\left( {[\lambda_{f}(z^{*})]_{+}} \right) \hat{q}^{T}+ \hat{q}\textup{Diag}\left( {[-\lambda_{f}(z^{*})]_{+}} \right) \hat{q}^{T}\\ &=&\hat{q} \textup{Diag}\left( {[\lambda_{f}(z^{*})]_{+} + [-\lambda_{f}(z^{*})]_{+}} \right)\hat{q}^{T}. \end{array} $$

Hence differentiability of \({\Pi }_{\mathbb {S}^{n}_{+}}(\cdot )\) at z is equivalent to strict complementarity of (x,y).

Now we consider z whose eigenvalues are non-zeros. Let (z,μ) go to (z,0), then λf(z) converges to λ. Let \(\bar {q}\) be a limit point of q. We then have \(z^{*}=\bar {q} \textup {Diag}(\lambda ^{*}) \bar {q}^{T}\) with \(\bar {q} \in \mathcal {O}^{n}(z^{*}). \) We deduce from \(\lambda _{i}^{*} \ne 0\), i = 1,…,n that

$$(\mathfrak{g}^{(1)} (\lambda_{f}(z)))_{ij}= 1 + \frac{\lambda_{i} + \lambda_{j}}{\sqrt{{\lambda_{i}^{2}} + 4\mu^{2}} + \sqrt{{\lambda_{j}^{2}} + 4\mu^{2}}}\to 1+ \frac{\lambda_{i}^{*} + \lambda_{j}^{*}}{|\lambda_{i}^{*}| + | \lambda_{j}^{*}|}.$$

Therefore, by Theorem 2, when (z,μ) → (z,0), where z are differential points of \({\Pi }_{\mathbb {S}^{n}_{+}}(\cdot )\), Dpμ(z) converges to \(\textup {D} {\Pi }_{\mathbb {S}^{n}_{+}}(z^{*})\) with

$$ \begin{array}{@{}rcl@{}} \textup{D} {\Pi}_{\mathbb{S}^{n}_{+}}(z^{*})[h]=\frac{1}{2} \bar{q} \left[ \bar{\mathfrak{g}}^{(1)} (\lambda^{*}) \circ (\bar{q}^{T} h \bar{q})\right] \bar{q}^{T}, \end{array} $$
(49)

where \(\bar {\mathfrak {g}}^{(1)}(\lambda ^{*})_{ij}= 1+ \frac {\lambda _{i}^{*} + \lambda _{j}^{*}}{|\lambda _{i}^{*}| + | \lambda _{j}^{*}|}\). Note that Formula (49) is independent of the choice \(\bar {q}\). Finally, similarly to the case \(\mathbb {R}_{+}^{n}\), we have \(\left \lVert {\textup {D} p_{\mu }(z) - \textup {D} {\Pi }_{\mathbb {S}^{n}_{+}}(z^{*})}\right \rVert =O(\left \lVert {z-z^{*},\mu }\right \rVert )\) since (z,μ)↦Dpμ(z) is locally Lipschitz around (z,0).

1.3 A.3 Proof of Proposition 8

We note that \(\mathcal {F}_{I^{*}}\) is the unique neighbour face of z and \(z^{*} \in \textup {int} (\mathcal {F}_{I} + \mathcal {N}_{I})\) as the projector is differentiable at z (see Proposition 7). When \((z,\mu )\rightarrow (z^{*},0)\), we have \(x\rightarrow {\Pi }_{K}(z^{*})=\bar {z}^{*},\) satisfying \(A_{i}\bar {z}^{*} =b_{i}, \forall i\in \mathcal {I}^{*}\) and \(A_{i}\bar {z}^{*} > b_{i}, \forall i\not \in \mathcal {I}^{*}.\) From Eq. 22 we have

$$ \begin{array}{@{}rcl@{}} z^{*} -\bar{z}^{*} = \lim\limits_{(z,\mu)\rightarrow (z^{*},0)} (x-z) = \lim\limits_{(z,\mu)\rightarrow (z^{*},0)} \sum\limits_{i\in \mathcal{I}^{*}} \frac{\mu^{2}}{A_{i} x-b_{i}} (-{A_{i}^{T}}) \end{array} $$
(50)

If there exists \(j\in \mathcal {I}^{*}\) and a subsequence \((z,\mu )_{k}\rightarrow (z^{*},0)\) such that \(\frac {{\mu _{k}^{2}}}{A_{j} x_{k} - b_{j}} \rightarrow 0\) then we take the limit of this subsequence in (50) to get

$$z^{*} -\bar{z}^{*} = \lim\limits_{k\rightarrow \infty} \sum\limits_{i\in \mathcal{I}^{*}\setminus\{j\}} \frac{{\mu_{k}^{2}}}{A_{i} x_{k}-b_{i}} (-{A_{i}^{T}}) \in \textup{cone} \{ -{A_{i}^{T}} : i\in \mathcal{I}^{*}\setminus\{j\}\} = \mathcal{N}_{\mathcal{I}^{*}\setminus\{j\}} $$

On the other hand, \(\bar {z}^{*}\in \mathcal {F}_{\mathcal {I}^{*}\setminus \{j\}}\) as \(A_{i}\bar {z}^{*}=b_{i} \forall i\in \mathcal {I}^{*}\setminus \{j\}\). Hence \(z^{*} = \bar {z}^{*} + z^{*} -\bar {z}^{*} \in \mathcal {F}_{I^{*}\setminus \{j\}} + \mathcal {N}_{\mathcal {I}^{*}\setminus \{j\}}\), which implies \(\mathcal {I}^{*}\setminus \{j\}\) is a neighbour face of z. This contradicts to the fact \(\mathcal {I}^{*}\) is the unique neighbour face of z. Therefore, for all \(i\in \mathcal {I}^{*}, \frac {\mu ^{2}}{A_{i} x -b_{i}}\) only have nonzero limit points. The result follows then.

1.4 A.4 Proof of Proposition 9

By re-indexing z if necessary, we can assume that π is the identity permutation. For each i ∈{1,…,n}, if \(|x_{i}^{*}| < t^{*}\) then

$$x_{i}^{*} = \lim x_{i} = \lim (z_{i}-\frac{2\mu^{2}}{t^{2}-{x_{i}^{2}}}x_{i}) = z_{i}^{*}. $$

Together with sgn(xi) = sgn(zi) and t > |xi|, we deduce that \(x_{i}^{*}=\textup {sgn}(z_{i}^{*}) t^{*} \text {or} z_{i}^{*} \text {for} i=1,\ldots ,n. \) Moreover, \(|x_{i}| < {\min \limits } \{t,|z_{i}| \}\) further implies that

$$x_{i}^{*}=\left\{\begin{array}{ll} \textup{sgn}(z_{i}^{*}) t^{*} &\text{if} t^{*} < |z_{i}^{*}|\\ z_{i}^{*} &\text{if} t^{*} > |z_{i}^{*}|. \end{array}\right. $$

Thus, there exists a unique positive integer k such that

$$x_{i}^{*} =\left\{\begin{array}{ll}\textup{sgn}(z_{i}^{*}) t^{*} &\text{for} i=1,\ldots, \mathbf k^{*},\\ z_{i}^{*} &\text{for} i=\mathbf k^{*}+1,\ldots,n, \end{array}\right. $$

and \(|z_{\mathbf k^{*}}^{*} |> t^{*} \geq |z_{\mathbf k^{*}+1}^{*}|\). Summing up (n + 1) equations in (26) gives

$$z_{o} + \sum\limits_{i=1}^{n}|z_{i}| = t+ \sum\limits_{i=1}^{n}|x_{i}| - \mu^{2} \sum\limits_{i=1}^{n} \frac{2(t-|x_{i}|)}{t^{2} - {x_{i}^{2}}} = t+ \sum\limits_{i=1}^{n} |x_{i}| - \mu^{2} \sum\limits_{i=1}^{n} \frac{2}{t+ |x_{i}|}. $$

If t > 0 then taking limnit gives, \(z_{o}^{*}+\sum \limits _{i=1}^{n} |z_{i}^{*}| = t^{*} + \sum \limits _{i=1}^{n}|x_{i}^{*}|\), and hence

$$(\mathbf k^{*}+1)t^{*} = t^{*} + \sum\limits_{i=1}^{\mathbf k^{*}}|x_{i}^{*}| = z_{o}^{*} + \sum\limits_{i=1}^{n}|z_{i}^{*}| - \sum\limits_{i=1}^{n}|x_{i}^{*}|=z_{o}^{*} + \sum\limits_{i=1}^{\mathbf k^{*}}|z_{i}^{*}|. $$

If t = 0 then |xi| < t implies that \(x_{i}^{*}=0\) for i = 1,…,n. Thus

$$ \begin{array}{@{}rcl@{}} z_{o}^{*} + \sum\limits_{i=1}^{n}|z_{i}^{*}| &= \lim (z_{o}+\sum\limits_{i=1}^{n}|z_{i}|) = \lim (t+ \sum\limits_{i=1}^{n}|x_{i}| - \mu^{2}\sum\limits_{i=1}^{n}\frac{2}{t+|x_{i}|}\\ & \leq \lim (t+\sum\limits_{i=1}^{n}|x_{i}|) = t^{*} + \sum\limits_{i=1}^{n}|x_{i}^{*}|=0. \end{array} $$

Subsequently, \(z_{o}^{*} + \sum \limits _{i=1}^{\mathbf k^{*}}|z_{i}^{*}| \leq z_{o}^{*} + \sum \limits _{i=1}^{n}|z_{i}^{*}|\leq 0\). Hence,

$$t^{*} = \max \left\{\frac{1}{\mathbf k^{*}+1}(z_{o}^{*} + \sum\limits_{i=1}^{\mathbf k^{*}} | z^{*}_{\pi(i)}|),0 \right\}.$$

Appendix B: Example

We consider the second order cone in \(\mathbb {R}^{3}\)

$$K_{2}=\{ (t,z): z \in \mathbb{R}^{2}, t\in \mathbb{R}_{+}, \left\lVert {z} \right\rVert \leq t\}. $$

Firstly, we use the barrier \(f^{(1)}(t,z)=-\log (t^{2}-\|z\|^{2}).\) Denote \(\mathbf M=t^{2} - {z_{1}^{2}} - {z_{2}^{2}}\). The gradient of f(1) is

$$ \nabla f^{(1)}(t,z)=\left( {-2t \mathbf M^{-1}, 2z_{1} \mathbf M^{-1}, 2z_{2} \mathbf M^{-1}} \right).$$

The smoothing approximation \(p^{(1)}_{\mu }(t^{o},z^{o})=(t,z)\) regarding to f(1)(t,z) is computed by

$$ \left\{\begin{array}{ll} t -\mu^{2} (2 t \mathbf M^{-1})&=t^{o}\\ z_{1} + \mu^{2} (2 z_{1} \mathbf M^{-1}) &= {z_{1}^{o}}\\ z_{2} + \mu^{2} (2 z_{2} \mathbf M^{-1})&={z_{2}^{o}}. \end{array}\right. $$
(51)

The unique solution of (51) is

$$\left\{\begin{array}{ll} t=\frac{1}{4}\left( {2t^{o}+\sqrt{(t^{o}-\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}} + \sqrt{(t^{o}+\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}}} \right)\\ z_{1}=\frac{1}{4} \frac{{z_{1}^{o}}}{\left\lVert {z^{o}} \right\rVert} \left( {2\left\lVert {z^{o}} \right\rVert + \sqrt{(t^{o}+\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}} - \sqrt{(t^{o}-\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}} } \right)\\ z_{2}=\frac{1}{4} \frac{{z_{2}^{o}}}{\left\lVert {z^{o}} \right\rVert} \left( {2\left\lVert {z^{o}} \right\rVert + \sqrt{(t^{o}+\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}} - \sqrt{(t^{o}-\left\lVert {z^{o}} \right\rVert)^{2} + 8\mu^{2}} } \right). \end{array}\right. $$

Denote \(s_{1}=\sqrt {(t^{o}-\left \lVert {z^{o}} \right \rVert )^{2} + 8\mu ^{2}}, s_{2}=\sqrt {(t^{o}+\left \lVert {z^{o}} \right \rVert )^{2} + 8\mu ^{2}}\). We have

$$\textbf{J} p_{\mu}^{(1)}(t^{o},{z_{1}^{o}},{z_{2}^{o}})=\left( \begin{array}{llll} d_{11} & d_{12} & d_{13}\\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33}, \end{array}\right) $$

where

$$ \begin{array}{@{}rcl@{}} d_{11}&=&\frac{1}{2}+\frac{t^{o}(t^{o}-\left\lVert {z^{o}} \right\rVert)}{4s_{1}}+\frac{t^{o}(t^{o}+\left\lVert {z^{o}} \right\rVert)}{4s_{2}}, \\ d_{12}=d_{21}&=&-\frac{(t^{o}-\left\lVert{z^{o}}\right\rVert){z_{1}^{o}}}{4\left\lVert{z^{o}}\right\rVert s_{1}}+\frac{(t^{o}+\left\lVert{z^{o}}\right\rVert){z_{1}^{o}}}{4\left\lVert{z^{o}} \right\rVert s_{2}},\\ d_{13}=d_{31}&=&-\frac{(t^{o}-\left\lVert{z^{o}}\right\rVert){z_{2}^{o}}}{4\left\lVert{z^{o}}\right\rVert s_{1}}+\frac{(t^{o}+\left\lVert{z^{o}}\right\rVert){z_{2}^{o}}}{4\left\lVert{z^{o}}\right\rVert s_{2}},\\ d_{22}&=&\frac{1}{2}+\frac{({z_{1}^{o}})^{2}}{\left\lVert{z^{o}}\right\rVert^{2}} \left( {\frac{t^{o}+\left\lVert{z^{o}}\right\rVert}{s_{2}} + \frac{t^{o}-\left\lVert{z^{o}}\right\rVert}{s_{1}}}\right) +\frac{({z_{2}^{o}})^{2}(s_{2}-s_{1})}{\left\lVert{z^{o}}\right\rVert^{2}},\\ d_{23}=d_{32}&=&\frac{{z_{1}^{o}}}{\left\lVert{z^{o}}\right\rVert}\left( {\frac{(t^{o}+\left\lVert{z^{o}}\right\rVert){z_{2}^{o}}}{s_{2}} + \frac{(t^{o}-\left\lVert{z^{o}}\right\rVert){z_{2}^{o}}}{s_{1}}}\right),\\ d_{33}&=&\frac{1}{2}+\frac{({z_{2}^{o}})^{2}}{\left\lVert{z^{o}}\right\rVert^{2}} \left( {\frac{t^{o}+\left\lVert{z^{o}}\right\rVert}{s_{2}} + \frac{t^{o}-\left\lVert{z^{o}}\right\rVert}{s_{1}}}\right) +\frac{({z_{1}^{o}})^{2}(s_{2}-s_{1})}{\left\lVert{z^{o}}\right\rVert^{2}}. \end{array} $$

We choose \((t^{o},{z_{1}^{o}},{z_{2}^{o}})\) such that \( (t^{o},{z_{1}^{o}},{z_{2}^{o}}) \to (t^{*},z_{1}^{*},z_{2}^{*})=(0,1,0)\); then \(s_{1}\to 1, s_{2} \to 1, \left \lVert {z^{o}} \right \rVert \to 1\). We imply

$$\lim\limits_{(t^{o},{z_{1}^{o}},{z_{2}^{o}},\mu)\rightarrow (0,1,0,0)} \text{\textbf{J}} p_{\mu}^{(1)}(t^{o},{z_{1}^{o}},{z_{2}^{o}}) = \left( \begin{array}{ccc} 1/2 & 1/2 & 0\\ 1/2 & 1/2 & 0\\ 0 & 0 & 1/2 \end{array}\right), $$

which equals to \(\text {\textbf {J}}{\Pi }_{K_{2}}(0,1,0)\) by Theorem 2. Now we use another barrier

$$ f^{(2)} (u,v_{1},v_{2}) = -\log(u^{2}-\|v\|^{2})-\log (u-v_{1}) - \log (u+v_{1}).$$

Denote Mμ = u2v2w2. Gradient ∇f(2)(u,v1,v2) of f(2) is

$$ \left( {-2u \mathbf M_{\mu}^{-1} -\frac{1}{u-v_{1}} - \frac{1}{u+v_{1}}, 2v_{1} \mathbf M_{\mu}^{-1} +\frac{1}{u-v_{1}} - \frac{1}{u+v_{1}} , 2v_{2} \mathbf M_{\mu}^{-1}} \right). $$

Let \(p_{\mu }^{(2)}(t^{*},z_{1}^{*},z_{2}^{*})=p_{\mu }^{(2)}(0,1,0)=(u,v_{1},v_{2})\), which is defined by

$$\left\{\begin{array}{lll} u - \mu^{2} \left( {2 u \mathbf M_{\mu}^{-1} +\frac{1}{u-v_{1}} + \frac{1}{u+v_{1}}} \right) =0 \\ v_{1} + \mu^{2} \left( { 2 v_{1} \mathbf M_{\mu}^{-1} + \frac{1}{u-v_{1}} -\frac{1}{u+v_{1}}} \right) = 1\\ v_{2} + \mu^{2} (2 v_{2} \mathbf M_{\mu}^{-1}) = 0. \end{array}\right. $$

The third equation implies v2 = 0, hence \(\mathbf M_{\mu }=u^{2} - {v_{1}^{2}} =(u-v_{1})(u+v_{1}).\) Thus, the first and the second equation imply

$$ \left\{\begin{array}{lll} u+v_{1} - \frac{4\mu^{2}}{u+v_{1}}=1\\ u-v_{1} -\frac{4\mu^{2}}{u-v_{1}}=-1, \end{array}\right. $$

which give \(u=\frac {1}{2}\sqrt {1+ 16\mu ^{2}}, v_{1}=\frac {1}{2}, \mathbf M_{\mu } = 4\mu ^{2}\). Denote \(a=\sqrt {1+ 16\mu ^{2}}\). Hessian matrix ∇2f(2)(u,v1,v2) of the barrier f(2) at (u,v1,v2) is

$$ \begin{array}{@{}rcl@{}} \left( \begin{array}{cccccccc} \frac{1+8\mu^{2}}{16\mu^{4}}+\frac{4}{(a-1)^{2}}+\frac{4}{(a+1)^{2}} & -\frac{a}{16\mu^{4}} - \frac{4}{(a-1)^{2}} +\frac{4}{(a+1)^{2}} & 0\\ -\frac{a}{16\mu^{4}} - \frac{4}{(a-1)^{2}} +\frac{4}{(a+1)^{2}} &\frac{1+8\mu^{2}}{16\mu^{4}} + \frac{4}{(a-1)^{2}} +\frac{4}{(a+1)^{2}} & 0\\ 0&0 & \frac{1}{2\mu^{2}} \end{array}\right)=\left( \begin{array}{cccc} \frac{1+8\mu^{2}}{8\mu^{4}}& \frac{-a}{8 \mu^{4}}&0\\ \frac{-a}{8 \mu^{4}} &\frac{1+8\mu^{2}}{8\mu^{4}} & 0\\ 0 & 0 & \frac{1}{2\mu^{2}}. \end{array}\right) \end{array} $$

We remind that \( \text {\textbf {J}} p^{(2)}_{\mu }(0,1,0)=[I + \mu ^{2} \nabla ^{2} f^{(2)}(u,v_{1},v_{2})]^{-1}=\left (\begin {array}{ccc} 1/2 & \frac {1}{2a} &0 \\ \frac {1}{2a} & 1/2&0\\ 0 & 0 & 2/3 \end {array}\right ). \) Thus, \(\lim \limits _{\mu \rightarrow 0}\text {\textbf {J}} p^{(2)}_{\mu }(0,1,0)\) equals \(\left (\begin {array}{ccc} 1/2&1/2&0\\ 1/2&1/2&0\\ 0&0&2/3 \end {array}\right ).\) It does not coincide with the Jacobian of \({\Pi }_{K_{2}}\) at (0,1,0). This shows that the limit \(\lim \limits _{(t^{o},{z_{1}^{o}},{z_{2}^{o}},\mu )\rightarrow (0,1,0,0)}\textup {D} p^{(2)}_{\mu }(t^{o},z^{o})\) does not exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hien, L.T.K., Chua, C.B. A Global Linear and Local Superlinear (Quadratic) Inexact Non-Interior Continuation Method for Variational Inequalities Over General Closed Convex Sets. Set-Valued Var. Anal 29, 109–144 (2021). https://doi.org/10.1007/s11228-020-00540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-020-00540-6

Keywords

Mathematics Subject Classification (2010)

Navigation