Skip to main content
Log in

Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we introduce the finite neighboring type and the finite chain length conditions for a connected self-similar set K. We show that with these two conditions, K is a finitely ramified graph directed (f.r.g.d.) fractal defined by Hambly and Nyberg (Proc. Edinb. Math. Soc. (2) 46(1), 1–34 2003). We give some nontrivial examples and compute the harmonic structures on them explicitly. Furthermore, for a f.r.g.d. self-similar set K, we provide an equivalent description, the finitely ramified of finite type (f.r.f.t.) cell structure of K, and investigate the relationship of harmonic structures associated with different f.r.f.t. cell structures of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Ruiz, P.: Explicit formulas for heat kernels on diamond fractals. Comm. Math. Phys. 364, 1305–1326 (2018)

    Article  MathSciNet  Google Scholar 

  2. Alonso Ruiz, P., Freiberg, U.: Dirichlet forms on non-self-similar fractals: Hanoi attractors. Int. J. Appl. Nonlinear Sci. 1, 247–274 (2014)

    Article  MathSciNet  Google Scholar 

  3. Alonso Ruiz, P., Freiberg, U.: Weyl asymptotics for Hanoi attractors. Forum Math. 29, 1003–1021 (2017)

    Article  MathSciNet  Google Scholar 

  4. Alonso Ruiz, P., Freiberg, U., Kigami, J.: Completely symmetric resistance forms on the stretched Sierpiński gasket. J. Fractal Geom. 5, 227–277 (2018)

    Article  MathSciNet  Google Scholar 

  5. Alonso Ruiz, P., Freiberg, U., Teplyaev, A.: Energy and Laplacian on Hanoi-type fractal quantum graphs. J. Phys. A 49(165206), 36 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Aougab, T., Dong, S.C., Strichartz, R.S.: Laplacians on a family of quadratic Julia sets II. Commun. Pure Appl. Anal. 12(1), 1–58 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bandt, C., Rao, H.: Topology and separation of self-similar fractals in the plane. Nonlinearity 20(6), 1463–1474 (2007)

    Article  MathSciNet  Google Scholar 

  8. Barlow, M.T.: Diffusions on fractals. In: Bernard, P. (ed.) Lectures on Probability and Statistics, Volume 1690 of Lecture Notes in Math. Springer (1998)

  9. Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré 25, 225–257 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Barlow, M.T., Bass, R.F.: Brownian motion and Harmonic analysis on the Sierpinski carpet. Canad. J. Math. 51, 673–744 (1999)

    Article  MathSciNet  Google Scholar 

  11. Barlow, M.T., Bass, R.F., Kumagai, T., Teplyaev, A.: Uniqueness of Brownian motion on Sierpiński carpets. J. Eur. Math. Soc. 12, 655–701 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Ben-Bassat, O., Strichartz, R.S., Teplyaev, A.: What is not in the domain of the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166, 197–217 (1999)

    Article  MathSciNet  Google Scholar 

  13. Fitzsimmons, P.J., Hambly, B.M., Kumagai, T.: Transition density estimates for Brownian motion on affine nested fractals. Comm. Math. Phys. 165, 595–620 (1994)

    Article  MathSciNet  Google Scholar 

  14. Flock, T.C., Strichartz, R.S.: Laplacians on a family of quadratic Julia sets I. Trans. Amer. Math. Soc. 364(8), 3915–3965 (2012)

    Article  MathSciNet  Google Scholar 

  15. Goldstein, S.: Random walks and diffusions on fractals. In: Kesten, H. (ed.) Percolation Theory and Ergodic Theory of Infinite Particle Systems. IMA Math. Appl., vol. 8, pp 121–129. Springer, New York (1987)

  16. Hambly, B.M., Metz, V., Teplyaev, A.: Self-similar energies on post-critically finite self-similar fractals. J. London Math. Soc. (2) 74(1), 93–112 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hambly, B.M., Nyberg, S.O.G.: Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem. Proc. Edinb. Math. Soc. (2) 46(1), 1–34 (2003)

    Article  MathSciNet  Google Scholar 

  18. Kigami, J.: A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math. 6(2), 259–290 (1989)

    Article  MathSciNet  Google Scholar 

  19. Kigami, J.: Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335(2), 721–755 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Kigami, J.: Analysis on Fractals Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  21. Kigami, J.: Harmonic analysis for resistance forms. J. Funct. Anal. 204(2), 399–444 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kigami, J.: Volume doubling measures and heat kernel estimates on self-similar sets. Mem. Amer. Math. Soc. 199, no. 932 (2009)

  23. Kigami, J.: Resistance forms, quasisymmetric maps and heat kernel estimates. Mem. Amer. Soc. 216, no. 1015 (2012)

  24. Kigami, J., Strichartz, R.S., Walker, K.C.: Constructing a Laplacian on the diamond fractal. Experiment. Math. 10(3), 437–448 (2001)

    Article  MathSciNet  Google Scholar 

  25. Lau, K.-S., Ngai, S.-M.: A generalized finite type condition for iterated function systems. Adv. Math. 208, 647–671 (2007)

    Article  MathSciNet  Google Scholar 

  26. Mauldin, D., Williams, S.: Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309, 811–829 (1998)

    Article  MathSciNet  Google Scholar 

  27. Metz, V: “Laplacians” on finitely ramified, graph directed fractals. Math. Ann. 330(4), 809–828 (2004)

    Article  MathSciNet  Google Scholar 

  28. Metz, V.: A note on the diamond fractal. Potential Anal. 21(1), 35–46 (2004)

    Article  MathSciNet  Google Scholar 

  29. Metz, V., Grabner, P.: An interface problem for a Sierpinski and a Vicsek fractal. Math. Nachr. 280(13–14), 1577–1594 (2007)

    Article  MathSciNet  Google Scholar 

  30. Ngai, S.-M., Wang, Y.: Hausdorff dimension of self-similar sets with overlaps. J. London Math. Soc. (2) 63(3), 655–672 (2001)

    Article  MathSciNet  Google Scholar 

  31. Rao, H., Wen, Z.-Y.: A class of self-similar fractals with overlap structure. Adv. Appl. Math. 20, 50–72 (1998)

    Article  MathSciNet  Google Scholar 

  32. Rogers, L.G., Teplyaev, A.: Laplacians on the basilica Julia sets. Commun. Pure. Apple. Anal. 9(1), 211–231 (2010)

    Article  MathSciNet  Google Scholar 

  33. Spicer, C., Strichartz, R.S., Totari, E.: Laplacians on Julia sets III: Cubic Julia sets and formal matings. Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, Contemp Math., vol. 600, pp 327–348. Amer. Math. Soc., Providence (2013)

    MATH  Google Scholar 

  34. Strichartz, R.S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  35. Teplyaev, A.: Harmonic coordinates on fractals with finitely ramified cell structure. Canad. J. Math. 60, 457–480 (2008)

    Article  MathSciNet  Google Scholar 

  36. Wang, X.-Y.: Graphs induced by iterated function systems. Math. Z. 277, 829–845 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous referee for the suggestions that led to the improvement of this paper. The research of Qiu was supported by the NSFC grant 11471157

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Qiu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Qiu, H. Resistance Forms on Self-Similar Sets with Finite Ramification of Finite Type. Potential Anal 54, 581–606 (2021). https://doi.org/10.1007/s11118-020-09840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09840-w

Keywords

Mathematics Subject Classification (2010)

Navigation