Skip to main content

Advertisement

Log in

Effects of Climate Variability on Queen Production and Pollen Preferences of Neotropical Bumblebee Bombus atratus in a High Andean Suburban Condition

  • Insect Pollinators
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Bombus atratus Franklin is a widely distributed bumblebee of South America. In Colombia, this species is recognized for its ability to adapt to highly disturbed habitats. However, knowledge of its ecology is poorly known, in particular conditions to ensure the long-term conservation of its populations. Identification of pollen resources is an important issue that could be used as a tool to manage and conserve bumblebees. In tropical areas, rainfall patterns could affect floral phenology and therefore the availability of pollen resources. Considering this, the present work aimed to establish the effect of extreme weather conditions (El Niño) in pollen availability, use of pollinic sources, and gyne production in B. atratus colonies. We reared and located 14 B. atratus colonies in a suburban area during a dry season (ENSO “El Niño”) and a rainy season (ENSO “La Niña”). We registered time to gyne production and numbers of gynes produced per colony. We extracted pollen samples to establish both its floral origin and its relative abundance. We measured floral offer for each season. The data of pollen use per colony were utilized to perform Bipartite networks. We analyzed the production of gynes and pollen use per season with correlation models and generalized linear models. Colonies of the rainy season produced more gynes and faster. The floral diversity and offer were higher during the rainy season. Successful colonies used specific pollen sources in two seasons, independently of the floral offer. Extreme dry season affected development of B. atratus colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahamovich AH, Díaz B (2002) Bumblebees of the Neotropical region (Hymenoptera: Apidae). Biota Colombiana 3(2):199–214

    Google Scholar 

  • Ahrne K, Bengtsson J, Elmqvist T (2009) Bumblebees (Bombus spp) along a gradient of increasing urbanization. PLoS One 4(5):e5574

    PubMed  PubMed Central  Google Scholar 

  • Alanen E, Hyvönen T, Lindgren S, Härmä O, Kuussaari M (2011) Differential responses of bumblebees and diurnal Lepidoptera to vegetation succession in long-term set-aside. J Appl Ecol 48:1251–1259

    Google Scholar 

  • Aldana J, Cure JR, Almanza MT, Vecil D, Rodríguez D (2007) Effect of Bombus atratus (Hymenoptera: Apidae) on tomato production (Lycopersicon esculentum Mill.) in greenhouse in Bogotá plateau, Colombia. Agronomía Colombiana 25(1):62–72

    Google Scholar 

  • Ballantyne G, Baldock KC, Willmer PG (2015) Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc R Soc B 282(1814):20151130

    PubMed  Google Scholar 

  • Baloglu GH, Gurel F (2015) The effects of pollen protein content on colony development of the bumblebee, Bombus terrestris L. J Apic Sci 59(1):83–88

    CAS  Google Scholar 

  • Bendix J, Homeier J, Ortiz EC, Emck P, Breckle SW, Richter M, Beck E (2006) Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. Int J Biometeorol 50(6):370–384

    CAS  PubMed  Google Scholar 

  • Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits. Ecology. 89(12):3387–3399

    PubMed  Google Scholar 

  • Cameron S, Jost MC (1998) Mediators of dominance and reproductive success among queens in the cyclically polygynous Neotropical bumblebee Bombus atratus Franklin. Insect Soc 45(2):135–149

    Google Scholar 

  • Cameron S, Lozier J, Strange J, Koch J, Cordes N, Solter L, Griswold T (2010) Patterns of widespread decline in North American bumblebees. PNAS 108:662–667

    Google Scholar 

  • Carvell C, Roy D, Smart S, Pywell R, Preston C, Goulson D (2006) Decline in forage availability for bumblebees at a national scale. Biol Conserv 132:481–489

    Google Scholar 

  • Chacoff NP, Resasco J, Vázquez DP (2018) Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology 99(1):21–28

    PubMed  Google Scholar 

  • Chang-Yang CH, Sun IF, Tsai CH, Lu CL, Hsieh CF (2016) ENSO and frost codetermine decade-long temporal variation in flower and seed production in a subtropical rain forest. J Ecol 104(1):44–54

    Google Scholar 

  • Chapman CA, Valenta K, Bonnell TR, Brown KA, Chapman LJ (2018) Solar radiation and ENSO predict fruiting phenology patterns in a 15-year record from Kibale National Park, Uganda. Biotropica. 50(3):384–395

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson DB, Xie SP, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex & PM Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Colla S, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Creason. Biodivers Conserv 17:1379–1391

    Google Scholar 

  • Crone E, Williams NM (2016) Bumblebee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production. Ecol Lett 19(4):460–468

    PubMed  Google Scholar 

  • Da Silva-Matos EV, Garófalo CA (2000) Worker life tables, survivorship, and longevity in colonies of Bombus (Fervidobombus) atratus (Hymenoptera: Apidae). Rev Biol Trop 48(2–3):657–664

    PubMed  Google Scholar 

  • Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018) Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nat Commun 9(1):913

    PubMed  PubMed Central  Google Scholar 

  • Dormann CF, Fruend J, Bluethgen N, Gruber B (2009) Indices, graphs, and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Google Scholar 

  • Elbgami T, Kunin WE, Hughes WO, Biesmeijer JC (2014) The effect of proximity to a honeybee apiary on bumblebee colony fitness, development, and performance. Apidologie. 45(4):504–513

    CAS  Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22(8):432–439

    PubMed  Google Scholar 

  • Garófalo CA, Zucchi R, Muchillo G (1986) Reproductive studies of a Neotropical bumblebees, Bombus atratus (Hymenoptera, Apidae). Revista Brasileira de Genetica 9(2):231–243

    Google Scholar 

  • Gonzalez VH, Mejia A, Rasmussen C (2004) Ecology and nesting behavior of Bombus atratus Franklin in Andean highlands (Hymenoptera: Apidae). J Hymenopt Res 13(2):234–242

    Google Scholar 

  • Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie. 32(1):105–111

    Google Scholar 

  • Goulson D, Lye C, Darvill B (2008) Decline and conservation of bumblebees. Annu Rev Entomol 53:191–208

    CAS  PubMed  Google Scholar 

  • Grixti J, Wong L, Cameron S, Favret C (2009) Decline of bumblebees in the North American Midwest. Biol Conserv 142:75–84

    Google Scholar 

  • Guimarães P, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Model Softw 21:1512–1513

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis Palaeontologia Electronica 4(1): 9

  • Hanley ME, Awbi AJ, Franco M (2014) Going native? Flower use by bumblebees in English urban gardens. Ann Bot 113(5):799–806

    PubMed  PubMed Central  Google Scholar 

  • Jha S, Kremen C (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. Proc Natl Acad Sci 110(2):555–558

    CAS  PubMed  Google Scholar 

  • Jha S, Stefanovich LE, Kremen C (2013) Bumblebee pollen use and preference across spatial scales in human-altered landscapes. Ecol Entomol 38(6):570–579

    Google Scholar 

  • Kitaoka TK, Nieh JC (2009) Role of pollen quality, storage levels, and odor. Behav Ecol Sociobiol 63(4):501–510

    Google Scholar 

  • Kremen C (2007) Importance of pollinators in changing landscapes for world crops. Royal Society 274:13–303

    Google Scholar 

  • Leonhardt SD, Blüthgen N (2012) The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie. 43:348–370

    Google Scholar 

  • Liévano A, Ospina R (1984) Contribución al conocimiento de los abejorros sociales de Cundinamarca. Undergraduate thesis, Universidad Nacional de Colombia. 163 p

  • Marquitti F, Guimaraes P, Pires M, Bittencourt L (2008) Asymmetries in specialization in ant-plant mutualistic networks. Proc R Soc Lond B 12:2041–2047

    Google Scholar 

  • Michener CD (2000) The bees of the world. JHU Press

  • Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins, Baltimore

    Google Scholar 

  • Miller-Rushing AJ, Høye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1555):3177–3186

    Google Scholar 

  • Nates-Parra G, Parra A, Rodríguez A, Baquero P, Vélez D (2006) Abejas silvestres (Hymenoptera: Apoidea) en ecosistemas urbanos: Estudio en la ciudad de Bogotá y sus alrededores. Revista Colombiana de Entomología 32(1):77–84

    Google Scholar 

  • Opler PA, Frankie GW, Baker HG (1976) Rainfall as a factor in the release, timing, and synchronization of anthesis by tropical trees and shrubs. J Biogeogr:231–236

  • Padilla SC, Cure JR, Riaño DA, Gutierrez AP, Rodriguez D, Romero E (2017) Gyne and drone production in Bombus atratus (Hymenoptera: Apidae). J Apic Sci 61(1):55–72

    Google Scholar 

  • Pardo L, Jiménez L (2006) Observación de rangos de vuelo de Bombus atratus (Hymenoptera: Apidae) en ambientes urbanos. Acta Biológica Colombiana 11(2):131–136

  • Poveda CC, Riaño JD, Aguilar BL, Cure JR (2018) Eficiencia de polinización de colonias huerfanas de Bombus atratus (Hymenoptera: Apidae) en fresa (fragaria x ananassa) bajo cubierta. Acta Biológica Colombiana 23(1):73–79

    Google Scholar 

  • Pywell RF, Meek WR, Hulmes L, Hulmes S, James KL, Nowakowski M, Carvell C (2011) Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. J Insect Conserv 15(6):853–864

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ramírez-Arriaga E, Pacheco-Palomo KG, Moguel-Ordoñez YB, Moreno RZG, Godínez-García LM. (2018). Angiosperm resources for stingless bees (Apidae, Meliponini): a pot-pollen melittopalynological study in the Gulf of Mexico. In Pot-pollen in stingless bee melittology (pp. 111–130). Springer, Cham

  • Rech AR, Absy ML (2011) Pollen storages in nests of bees of the genera Partamona, Scaura and Trigona (Hymenoptera, Apidae). Revista Brasileira de Entomologia 55(3):361–372

    Google Scholar 

  • Riaño D, Pacateque J, Cure JR, Rodriguez D (2015) Pollination behavior and efficiency of Bombus atratus Franklin in sweet peppers (Capsicum annum L.) grown in a greenhouse. Revista Colombiana de Ciencias Hortícolas 9(2):259–267

    Google Scholar 

  • Rogers S, Cajamarca P, Tarpy D, Burrack H (2013) Honey bees and bumblebees respond differently to inter- and intra-specific encounters. Apidologie. 44(6):621–629

    Google Scholar 

  • Romero E, Cruz CP, Cure JR, Riaño D, Padilla S, Aguilar ML (2013) Desarrollo de un Escenario de Campo para el Estudio de Especies Nativas de Abejorros (Bombus spp.) de los Andes Colombianos (Hymenoptera: Apidae). Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 9(2): 200

  • Roubik DW, Sakai S, Hamid Karim AA (2005) Pollination ecology and the rain forest: Sarawak studies. Ecological studies. 174. Springer Press, New York. 35–50

  • Roulston TH, Cane H, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Sanchez F, Martinez-Habibe MC, Diaz S, Medina N, Riaño J, PaQui MF (2015) Biodiversidad en un campus universitario en la sabana de Bogotá: inventario de plantas y tetrápodos. Centro de museos Boletín científico 19:186–203

    Google Scholar 

  • Silva CI, Ballesteros PLO, Palmero MA, Bauermann SG, Evaldt ACP, Oliveira PE (2010) Catálogo polínico: Palinologia aplicada em estudos de conservação de abelhas do gênero Xylocopa no Triângulo Mineiro. EDUFU, Uberlândia

    Google Scholar 

  • Somme L, Vanderplanck M, Michez D, Lombaerde I, Moerman R, Wathelet B et al (2015) Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46(1):92–106

    Google Scholar 

  • Spiesman BJ, Bennett A, Isaacs R, Gratton C (2017) Bumblebee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biol Conserv 206:217–223

    Google Scholar 

  • Telleria MC (1998) Palynological analysis of food reserves found in a nest of Bombus atratus (Hymenoptera: Apidae). Grana 37(2):125–127

    Google Scholar 

  • Vaudo AD, Farrell LM, Patch HM, Grozinger CM, Tooker JF (2018) Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol Evol 8(11):5765–5776

    PubMed  PubMed Central  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. J Appl Ecol 46(1):187–193

    Google Scholar 

  • Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie. 40(3):367–387

    Google Scholar 

  • Willmer P (2012) Ecology: pollinator–plant synchrony tested by climate change. Curr Biol 22(4):R131–R132

    CAS  PubMed  Google Scholar 

  • Willmer P (2014) Climate change: bees and orchids lose touch. Curr Biol 24(23):R1133–R1135

    CAS  PubMed  Google Scholar 

  • Winfree R, Bartomeus I, Cariveau DP (2011) Native pollinators in anthropogenic habitats. Annu Rev Ecol E Syst 42:1–22

    Google Scholar 

Download references

Acknowledgments

Special thanks to Claudia Ines da Silva for support in palynology analysis and Paola Cruz Suarez and Ricardo Perez Alvarez for reviewing the text.

Funding

The study was financially supported by the Administrative Department of Science Technology and Innovation of Colombia – Colciencias and Nueva Granada University (CIAS-2296).

Author information

Authors and Affiliations

Authors

Contributions

DRJ: funding acquisition, planned, designed, conducted data analysis, wrote the manuscript; MG and PA: execute experimental work, conducted data analysis, wrote the manuscript; JRC: wrote the manuscript.

Corresponding author

Correspondence to D. Riaño-Jiménez.

Additional information

Edited by Carmen S S Pires – Embrapa

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaño-Jiménez, D., Guerrero, M., Alarcón, P. et al. Effects of Climate Variability on Queen Production and Pollen Preferences of Neotropical Bumblebee Bombus atratus in a High Andean Suburban Condition. Neotrop Entomol 49, 586–594 (2020). https://doi.org/10.1007/s13744-019-00758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00758-6

Keywords

Navigation