Skip to main content
Log in

The Abstraction/Representation Account of Computation and Subjective Experience

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

I examine the abstraction/representation theory of computation put forward by Horsman et al., connecting it to the broader notion of modeling, and in particular, model-based explanation, as considered by Rosen. I argue that the ‘representational entities’ it depends on cannot themselves be computational, and that, in particular, their representational capacities cannot be realized by computational means, and must remain explanatorily opaque to them. I then propose that representation might be realized by subjective experience (qualia), through being the bearer of the structure of abstract objects that are represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Block, N. (1980). Troubles with functionalism. Readings in Philosophy of Psychology, 1, 268–305.

    Google Scholar 

  • Boolos, G. S., & Jeffrey, R. C. (1989). Computability and logic. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bringsjord, S., & Zenzen, M. (2003). Superminds: People harness hypercomputation, and more (Vol. 29). Berlin: Springer Science & Business Media.

    MATH  Google Scholar 

  • Carnap, R. (1956). The methodological character of theoretical concepts. In H. Feigl & M. Scriven (Eds.), The foundations of science and the concepts of psychology and psychoanalysis (pp. 38–76). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Carruthers, P. (2007). Higher-order theories of consciousness. The Blackwell companion to consciousness (pp. 288–297). Oxford: Blackwell.

    Google Scholar 

  • Chaitin, G. (2006). The limits of reason. Scientific American, 294(3), 74–81.

    Google Scholar 

  • Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4(4), 391–402.

    Google Scholar 

  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of consciousness studies, 2(3), 200–219.

    Google Scholar 

  • Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Church, A. (1932). A set of postulates for the foundation of logic. Annals of Mathematics, 33, 346–366.

    MathSciNet  MATH  Google Scholar 

  • Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford: Oxford University Press.

    Google Scholar 

  • Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280(4), 98–103.

    Google Scholar 

  • Cubitt, T. S., Perez-Garcia, D., & Wolf, M. M. (2015). Undecidability of the spectral gap. Nature, 528(7581), 207.

    Google Scholar 

  • de Oliveira, G.S. (2018). Representationalism is a dead end. Synthese. https://doi.org/10.1007/s11229-018-01995-9

    Article  Google Scholar 

  • Demopoulos, W., & Friedman, M. (1985). Bertrand Russell’s the analysis of matter: Its historical context and contemporary interest. Philosophy of Science, 52(4), 621–639.

    Google Scholar 

  • Dennett, D. C. (1988). Quining qualia. In Bisiach, E. & Marcel, A. (Eds.), Consciousness in modern science. Oxford: Oxford University Press.

    Google Scholar 

  • Eddington, A. (1928). The nature of the physical world. New York: Macmillan.

    MATH  Google Scholar 

  • Enderton, H. (2001). A mathematical introduction to logic. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Fodor, J. A. (1975). The language of thought. Harvard: Harvard University Press.

    Google Scholar 

  • Fuchs, C. A. (2017). On participatory realism. Information and interaction (pp. 113–134). Berlin: Springer.

    Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1), 173–198.

    MathSciNet  MATH  Google Scholar 

  • Godfrey-Smith, P. (2009). Triviality arguments against functionalism. Philosophical Studies, 145(2), 273–295.

    Google Scholar 

  • Hameroff, S. R., & Penrose, R. (2017). Consciousness in the universe: An updated review of the “Orch-OR” theory of consciousness. In J. A. Tuszynski, T. E. Feinberg, & R. R. Poznanski (Eds.), A foundational approach, biophysics of consciousness (pp. 517–599). Singapore: World Scientific.

    Google Scholar 

  • Horsman, C., Stepney, S., Wagner, R. C., & Kendon, V. (2014). When does a physical system compute? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2169), 20140182.

    MATH  Google Scholar 

  • Horsman, D. C. (2015). Abstraction/representation theory for heterotic physical computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2046), 20140224.

    Google Scholar 

  • Horsman, D., Kendon, V., Stepney, S., & Young, J. P. W. (2017). Abstraction and representation in living organisms: When does a biological system compute? Representation and reality in humans, other living organisms and intelligent machines (pp. 91–116). Berlin: Springer.

    Google Scholar 

  • Jackson, F. (1982). Epiphenomenal qualia. The Philosophical Quarterly (1950-), 32(127), 127–136.

    Google Scholar 

  • James, W. (1884). What is an emotion? Mind, 9(34), 188–205.

    Google Scholar 

  • Kenny, A. J. (1971). The homunculus fallacy. In M. Grene & I. Prigogine (Eds.), Interpretations of life and mind: Essays around the problem of reduction (pp. 65–74). London: Routledge.

    Google Scholar 

  • Kim, J. (1987). “Strong” and “Global” supervenience revisited. Philosophy and Phenomenological Research, 48(2), 315–326.

    Google Scholar 

  • Kleene, S. C. (1943). Recursive predicates and quantifiers. Transactions of the American Mathematical Society, 53(1), 41–73.

    MathSciNet  MATH  Google Scholar 

  • Kleene, S. C. (1952). Introduction to metamathematics. New York: van Nordstrand.

    MATH  Google Scholar 

  • Klein, C. (2008). Dispositional implementation solves the superfluous structure problem. Synthese, 165(1), 141–153.

    Google Scholar 

  • Kriegel, U. (2003). The new mysterianism and the thesis of cognitive closure. Acta Analytica, 18(30–31), 177–191.

    Google Scholar 

  • Kriegel, U. (2009). Subjective consciousness: A self-representational theory. Oxford: Oxford University Press.

    Google Scholar 

  • Kriegel, U., & Williford, K. (Eds.). (2006). Self-representational approaches to consciousness. Cambridge: MIT Press.

    Google Scholar 

  • Lange, C. G. (1887). Über Gemütsbewegungen (Org.Om Sindsbevægelser). Leipzig: Thomas Theodor.

    Google Scholar 

  • Levine, J. (1983). Materialism and qualia: The explanatory gap. Pacific Philosophical Quarterly, 64(4), 354–361.

    Google Scholar 

  • Lycan, W. G. (1981). Form, function, and feel. The Journal of Philosophy, 78(1), 24–50.

    Google Scholar 

  • Lycan, W. G. (2015). Representational theories of consciousness. Metaphysics research lab. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy, summer 2015 ed. Stanford: Stanford University.

    Google Scholar 

  • Miller, F. (1882). Telegraphic code to insure privacy and secrecy in the transmission of telegrams. New York: CM Cornwell.

    Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435–450.

    Google Scholar 

  • Newman, M. H. (1928). Mr. Russell’s “Causal Theory of Perception”. Mind, 37(146), 137–148.

    Google Scholar 

  • Paterek, T., Kofler, J., Prevedel, R., Klimek, P., Aspelmeyer, M., Zeilinger, A., et al. (2010). Logical independence and quantum randomness. New Journal of Physics, 12(1), 013019.

    MathSciNet  MATH  Google Scholar 

  • Peres, A., & Zurek, W. H. (1982). Is quantum theory universally valid? American Journal of Physics, 50(9), 807–810.

    Google Scholar 

  • Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Putnam, H. (1960). Minds and machines. In S. Hook (Ed.), Dimensions of mind: A symposium (pp. 138–164). New York: Collier.

    Google Scholar 

  • Putnam, H. (1988). Representation and reality. Cambridge: MIT press.

    Google Scholar 

  • Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74(2), 358–366.

    MathSciNet  MATH  Google Scholar 

  • Robič, B. (2015). The foundations of computability theory. Berlin: Springer.

    MATH  Google Scholar 

  • Rogers, H. (1967). Theory of recursive functions and effective computability (Vol. 5). New York: McGraw-Hill.

    MATH  Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

    Google Scholar 

  • Russell, B. (1927). The analysis of matter. London: Routledge.

    MATH  Google Scholar 

  • Seager, W. (2006). The ‘Intrinsic Nature’ argument for panpsychism. Journal of Consciousness Studies, 13(10–11), 129–145.

    Google Scholar 

  • Seager, W. (2016). Theories of consciousness: an introduction (2nd ed.). Abingdon: Routledge.

    Google Scholar 

  • Searle, J. R. (1992). The rediscovery of the mind. Cambridge: MIT press.

    Google Scholar 

  • Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153(3), 393–416.

    MathSciNet  Google Scholar 

  • Shagrir, O. (2012). Computation, implementation, cognition. Minds and Machines, 22(2), 137–148.

    Google Scholar 

  • Shoemaker, S. (1982). The inverted spectrum. The Journal of Philosophy, 79(7), 357–381.

    Google Scholar 

  • Strawson, G. (2006). Realistic monism: Why physicalism entails panpsychism. Journal of Consciousness Studies, 13(10/11), 3.

    Google Scholar 

  • Strawson, G. (2019). What does “physical” mean? a prolegomenon to physicalist panpsychism. In W. Seager (Ed.), The Routledge handbook of panpsychism. Abingdon: Routledge.

    Google Scholar 

  • Szangolies, J. (2015). Von Neumann minds: Intentional automata. Mind Matter, 13(2), 169–191.

    Google Scholar 

  • Szangolies, J. (2018a). Epistemic horizons and the foundations of quantum mechanics. Foundations of Physics, 48(12), 1669–1697.

    MATH  Google Scholar 

  • Szangolies, J. (2018b). Von Neumann minds: A toy model of meaning in a natural world. In B. Foster, Z. Merali, & A. Aguirre (Eds.), Wandering towards a goal (pp. 29–39). Berlin: Springer.

    Google Scholar 

  • Tetens, H. (2013). Wissenschaftstheorie: Eine Einführung, vol 2808. CH Beck.

  • Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(1), 230–265.

    MathSciNet  MATH  Google Scholar 

  • von Neumann, J. (1966). The theory of automata: construction, reproduction, homogeneity, original unpublished manuscript, 1952–1953. In A. W. Burke (Ed.), Theory of self-reproducing automata (pp. 91–381). Urbana: University of Illinois Press.

    Google Scholar 

  • Whitehead, A. N. (1925). Science and the modern world. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Yanofsky, N. S. (2003). A universal approach to self-referential paradoxes, incompleteness and fixed points. Bulletin of Symbolic Logic, 9(3), 362–386.

    MathSciNet  MATH  Google Scholar 

  • Zwick, M. (1978). Quantum measurement and Gödel’s proof. Speculations in Science and Technology, 1(2), I978.

    Google Scholar 

Download references

Acknowledgements

I warmly thank Peter Hankins and two anonymous referees for comments and criticism on earlier versions of many of the arguments presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Szangolies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szangolies, J. The Abstraction/Representation Account of Computation and Subjective Experience. Minds & Machines 30, 259–299 (2020). https://doi.org/10.1007/s11023-020-09522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-020-09522-x

Keywords

Navigation