Skip to main content

Advertisement

Log in

Dynamical Emergence Theory (DET): A Computational Account of Phenomenal Consciousness

  • General Article
  • Published:
Minds and Machines Aims and scope Submit manuscript

First, conscious awareness, in the present view, is interpreted to be a dynamic emergent property of cerebral excitation.

Sperry (1969)

Abstract

Scientific theories of consciousness identify its contents with the spatiotemporal structure of neural population activity. We follow up on this approach by stating and motivating Dynamical Emergence Theory (DET), which defines the amount and structure of experience in terms of the intrinsic topology and geometry of a physical system’s collective dynamics. Specifically, we posit that distinct perceptual states correspond to coarse-grained macrostates reflecting an optimal partitioning of the system’s state space—a notion that aligns with several ideas and results from computational neuroscience and cognitive psychology. We relate DET to existing work, offer predictions for empirical studies, and outline future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Because our notion of structure is relational (determined by properties of a system’s collective dynamics), it does not rule out physical interpretations or extensions that are non-local.

  2. For a formal definition of computation in systems with continuous dynamics, see Siegelmann and Fishman (1998).

  3. In the case where the representations are intrinsic—that is, arise from the structure of the dynamics (clustering in the state or trajectory space) and are not arbitrarily determined by an external observer (see Sect. 2.1).

  4. A precise definition of self-organization is offered by Shalizi (2004, p. 118701–1).

  5. Qualia “enable one to discern similarities and differences: they engage discriminations.” (Clark 1985).

  6. We wish to stress that, by separating the implementational and computational substrates (and by appealing to emergence), we do not mean to imply that the latter is somehow nonphysical. Rather, we hold that it is a structural property of the system’s collective dynamics or of some underlying physical field (cf. Barrett 2014).

  7. GT holds that a topological equivalence between the two systems’ trajectory spaces should be sufficient (cf. Fekete and Edelman 2011), but this should be tested empirically to the extent possible.

  8. This corresponds to what William James (1890, p. 608) called “the specious present”: “no knife-edge, but a saddle-back, with a certain breadth of its own on which we sit perched, and from which we look in two directions into time.”.

  9. This formalization of trajectory spaces is only applicable to trajectories of finite duration.

  10. A level set of a scalar-valued function is a set of points in its domain for which its value is equal to some constant.

  11. A topologically complex trajectory would correspond to a class of rich ongoing experiences. Note that the precise shape of a trajectory that belongs to such a class is constrained, but not uniquely determined, by its complexity.

  12. For example, crimson is a kind of red, which in turn is a kind of color. This structure would be reflected in the clustering of the trajectories.

  13. The question of whether AE (the topological complexity of IS-level trajectories) would be invariant to changes in orientation, color, or other visual dimensions is interesting in its own right.

References

  • Allefeld, C., Atmanspacher, H., & Wackermann, J. (2009). Mental states as macrostates emerging from brain electrical dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science,19(1), 015102.

    MathSciNet  Google Scholar 

  • Atmanspacher, H. (2016). On macrostates in complex multi-scale systems. Entropy,18(12), 426.

    Google Scholar 

  • Baars, B. J. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research,150, 45–53.

    Google Scholar 

  • Bach, D. R., & Dayan, P. (2017). Algorithms for survival: a comparative perspective on emotions. Nature Reviews Neuroscience,18(5), 311.

    Google Scholar 

  • Balduzzi, D., & Tononi, G. (2009). Qualia: The geometry of integrated information. PLoS Computational Biology,5(8), e1000462.

    MathSciNet  Google Scholar 

  • Barrett, A. B. (2014). An integration of integrated information theory with fundamental physics. Frontiers in Psychology,5, 63.

    Google Scholar 

  • Barrett, A. B., & Mediano, P. A. (2019). The Phi measure of integrated information is not well-defined for general physical systems. Journal of Consciousness Studies,26(1–2), 11–20.

    Google Scholar 

  • Bar-Yam, Y. (2004). A mathematical theory of strong emergence using multiscale variety. Complexity,9(6), 15–24.

    MathSciNet  Google Scholar 

  • Beggs, J. M. (2008). The criticality hypothesis: How local cortical networks might optimize information processing. Philosophical Transactions of the Royal Society of London A,366(1864), 329–343.

    MathSciNet  MATH  Google Scholar 

  • Beggs, J. M., & Timme, N. (2012). Being critical of criticality in the brain. Frontiers in Physiology,3, 163.

    Google Scholar 

  • Bonnefond, M., Kastner, S., & Jensen, O. (2017). Communication between brain areas based on nested oscillations. eNeuro. https://doi.org/10.1523/ENEURO.0153-16.2017.

    Article  Google Scholar 

  • Bressler, S. L., & Kelso, J. S. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Sciences,5(1), 26–36.

    Google Scholar 

  • Bullock, D. (2004). Adaptive neural models of queuing and timing in fluent action. Trends in Cognitive Sciences,8(9), 426–433.

    Google Scholar 

  • Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron,68(3), 362–385.

    Google Scholar 

  • Campbell, D. T. (1974). ‘Downward Causation’ in hierarchically organised biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the Philosophy of Biology (pp. 179–183). London: Macmillan.

    Google Scholar 

  • Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society,46(2), 255–308.

    MathSciNet  MATH  Google Scholar 

  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies,2, 200–219.

    Google Scholar 

  • Cisek, P. (2012). Making decisions through a distributed consensus. Current Opinion in Neurobiology,22(6), 927–936.

    Google Scholar 

  • Clark, A. (1985). Qualia and the psychophysiological explanation of color perception. Synthese,65(3), 377–405.

    Google Scholar 

  • Clark, A. T., Ye, H., Isbell, F., Deyle, E. R., Cowles, J., Tilman, G. D., et al. (2015). Spatial convergent cross mapping to detect causal relationships from short time series. Ecology,96(5), 1174–1181.

    Google Scholar 

  • Cleeremans, A. (2008). Consciousness: the radical plasticity thesis. In R. Banerjee and B. K. Chakrabarti (Eds.), Progress in Brain Research, Volume 168, Chapter 3, (pp. 19–33).

  • Cocchi, L., Gollo, L. L., Zalesky, A., & Breakspear, M. (2017). Criticality in the brain: a synthesis of neurobiology, models and cognition. Progress in Neurobiology,158, 132–152.

    Google Scholar 

  • Collier, J. (2013). Emergence in dynamical systems. Analiza i Egzystencja (Analysis and Existence),23, 17–40.

    Google Scholar 

  • Coombes, S., Beim Graben, P., Potthast, R., & Wright, J. (Eds.). (2014). Neural fields: Theory and applications. Springer, Berlin.

  • Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review,113, 887–916.

    Google Scholar 

  • Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. In: Seminars in the Neurosciences, 2, 263–275. Saunders Scientific Publications.

  • Crutchfield, J. P. (1994). The calculi of emergence. Physica D,75(1–3), 11–54.

    MATH  Google Scholar 

  • Cutzu, F., & Edelman, S. (1996). Faithful representation of similarities among three-dimensional shapes in human vision. Proceedings of the National Academy of Sciences,93(21), 12046–12050.

    Google Scholar 

  • Davis, T., & Poldrack, R. A. (2013). Measuring neural representations with fMRI: practices and pitfalls. Annals of the New York Academy of Sciences,1296(1), 108–134.

    Google Scholar 

  • Deco, G., & Kringelbach, M. L. (2016). Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends in Neurosciences,39(3), 125–135.

    Google Scholar 

  • Deco, G., Kringelbach, M. L., Jirsa, V. K., & Ritter, P. (2017). The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports,7(1), 3095.

    Google Scholar 

  • Dehaene, S. (2014). Consciousness and the brain: Deciphering how the brain codes our thoughts. Penguin.

  • Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends in Cognitive Sciences,10(5), 204–211.

    Google Scholar 

  • Dehaene, S., Charles, L., King, J. R., & Marti, S. (2014). Toward a computational theory of conscious processing. Current Opinion in Neurobiology,25, 76–84.

    Google Scholar 

  • Deyle, E. R., & Sugihara, G. (2011). Generalized theorems for nonlinear state space reconstruction. PLoS One,6(3), e18295.

    Google Scholar 

  • Edelman, S. (1998). Representation is representation of similarity. Behavioral and Brain Sciences,21, 449–498.

    Google Scholar 

  • Edelman, S. (2008a). Computing the mind: How the mind really works. Oxford University Press, Oxford.

  • Edelman, S. (2008b). On the nature of minds, or: Truth and consequences. Journal of Experimental and Theoretical Artificial Intelligence,20(3), 181–196.

    MathSciNet  Google Scholar 

  • Edelman, S. (2012). Vision, reanimated and reimagined. Perception,41(9), 1116–1127.

    Google Scholar 

  • Edelman, S. (2016). The minority report: some common assumptions to reconsider in the modelling of the brain and behaviour. Journal of Experimental and Theoretical Artificial Intelligence,28(4), 751–776.

    Google Scholar 

  • Edelman, S. (2017). Language and other complex behaviors: Unifying characteristics, computational models, neural mechanisms. Language Sciences,62, 91–123.

    Google Scholar 

  • Edelman, S., & Fekete, T. (2012). Being in time. In S. Edelman, T. Fekete, and N. Zach (Eds.), Being in Time: Dynamical Models of Phenomenal Experience (pp. 81–94). John Benjamins.

  • Edelman, S., Grill-Spector, K., Kushnir, T., & Malach, R. (1998). Toward direct visualization of the internal shape representation space by fMRI. Psychobiology,26(4), 309–321.

    Google Scholar 

  • Edelman, S., & Moyal, R. (2017). Fundamental computational constraints on the time course of perception and action. In: Progress in Brain Research (Vol. 236, pp. 121–141). Elsevier.

  • Edelman, S., Moyal, R., & Fekete, T. (2016). To bee or not to bee? Animal Sentience: An Interdisciplinary Journal on Animal Feeling,1(9), 14.

    Google Scholar 

  • Edelsbrunner, H., & Harer, J. (2008). Persistent homology—a survey. Contemporary Mathematics,453, 257–282.

    MathSciNet  MATH  Google Scholar 

  • Esteban, F. J., Galadi, J. A., Langa, J. A., Portillo, J. R., & Soler-Toscano, F. (2018). Informational structures: A dynamical system approach for integrated information. PLoS Computational Biology,14(9), e1006154.

    Google Scholar 

  • Fekete, T. (2010). Representational systems. Minds and Machines,20(1), 69–101.

    Google Scholar 

  • Fekete, T., and Edelman, S. (2011). Towards a computational theory of experience. Consciousness and Cognition,20(3), 807–827.

    Google Scholar 

  • Fekete, T. and Edelman, S. (2012). The (lack of) mental life of some machines. In S. Edelman, T. Fekete, and N. Zach (Eds.), Being in Time: Dynamical Models of Phenomenal Experience, pp. 95–120. John Benjamins.

  • Fekete, T., Omer, D. B., O’Hashi, K., Grinvald, A., van Leeuwen, C., & Shriki, O. (2018). Critical dynamics, anesthesia and information integration: Lessons from multi-scale criticality analysis of voltage imaging data. Neuroimage,183, 919–933.

    Google Scholar 

  • Fekete, T., Pitowsky, I., Grinvald, A., & Omer, D. B. (2009). Arousal increases the representational capacity of cortical tissue. Journal of Computational Neuroscience,27(2), 211–227.

    Google Scholar 

  • Fekete, T., van Leeuwen, C., & Edelman, S. (2016). System, subsystem, hive: Boundary problems in computational theories of consciousness. Frontiers in Psychology,7, 1041.

    Google Scholar 

  • Freeman, W. J. (2006). A cinematographic hypothesis of cortical dynamics in perception. International Journal of Psychophysiology,60(2), 149–161.

    Google Scholar 

  • Freeman, W. J., & Holmes, M. D. (2005). Metastability, instability, and state transition in neocortex. Neural Networks,18(5–6), 497–504.

    MATH  Google Scholar 

  • Friston, K. J. (1997). Transients, metastability, and neuronal dynamics. Neuroimage,5(2), 164–171.

    Google Scholar 

  • Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity,1(1), 13–36.

    MathSciNet  Google Scholar 

  • Garland, J., Bradley, E., & Meiss, J. D. (2016). Exploring the topology of dynamical reconstructions. Physica D: Nonlinear Phenomena,334, 49–59.

    MathSciNet  MATH  Google Scholar 

  • Godfrey-Smith, P. (2016). Individuality, subjectivity, and minimal cognition. Biology and Philosophy,31(6), 775–796.

    Google Scholar 

  • Grill-Spector, K., & Malach, R. (2001). fMR–adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychologica,107(1–3), 293–321.

    Google Scholar 

  • Haldeman, C., & Beggs, J. M. (2005). Critical branching captures activity in living neural networks and maximizes the number of metastable states. Physical Review Letters,94(5), 058101.

    Google Scholar 

  • Halley, J. D., & Winkler, D. A. (2008). Classification of emergence and its relation to self-organization. Complexity,13(5), 10–15.

    Google Scholar 

  • Harbecke, J., & Atmanspacher, H. (2012). Horizontal and vertical determination of mental and neural states. Journal of Theoretical and Philosophical Psychology,32(3), 161.

    Google Scholar 

  • Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron,95(2), 245–258.

    Google Scholar 

  • Hoel, E. P., Albantakis, L., Marshall, W., & Tononi, G. (2016). Can the macro beat the micro? integrated information across spatiotemporal scales. Neuroscience of Consciousnes. https://doi.org/10.1093/nc/niw012.

    Article  Google Scholar 

  • Hoel, E. P., Albantakis, L., & Tononi, G. (2013). Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences,110(49), 19790–19795.

    Google Scholar 

  • Houghton, G. and Hartley, T. (1996). Parallels models of serial behaviour: Lashley revisited. Psyche 2, 25. Symposium on Implicit Learning.

  • James, W. (1890). The Principles of Psychology. New York: Holt.

    Google Scholar 

  • John, Y. J., Zikopoulos, B., Bullock, D., & Barbas, H. (2016). The emotional gatekeeper: A computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus. PLoS Computational Biology,12(2), e1004722.

    Google Scholar 

  • Kaneko, K., & Tsuda, I. (2003). Chaotic itinerancy. Chaos: An Interdisciplinary Journal of Nonlinear Science,13, 926–936.

    MathSciNet  MATH  Google Scholar 

  • Kauffman, S., & Clayton, P. (2006). On emergence, agency, and organization. Biology and Philosophy,21(4), 501–521.

    Google Scholar 

  • Kelso, J. A. S. (1997). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press.

    Google Scholar 

  • Kirchhoff, M. D., & Hutto, D. D. (2016). Never mind the gap: Neurophenomenology, radical enactivism, and the hard problem of consciousness. Constructivist Foundations,11(2), 346–353.

    Google Scholar 

  • Klopf, A. H. (1972). Brain function and adaptive systems—a heterostatic theory. Technical report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA. A summary appears in Proceedings of the International Conference on Systems, Man, and Cybernetics, 1974, IEEE Systems, Man, and Cybernetics Society, Dallas (1972).

  • Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: progress and problems. Nature Reviews Neuroscience,17(5), 307.

    Google Scholar 

  • Kolmogorov, A. N. (1958). New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Doklady of Russian Academy of Sciences,119, 861–864.

    MATH  Google Scholar 

  • Krohn, S., & Ostwald, D. (2017). Computing integrated information. Neuroscience of Consciousness,3(1), nix017.

    Google Scholar 

  • Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and Brain Sciences,12(2), 251–267.

    Google Scholar 

  • Ladyman, J., & Wiesner, K. (2018). What is a complex system. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Le Van Quyen, M. (2003). Disentangling the dynamic core: A research program for a neurodynamics at the large-scale. Biological Research,36(1), 67–88.

    Google Scholar 

  • Legenstein, R., & Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks,20(3), 323–334.

    MATH  Google Scholar 

  • Lowe, R., & Ziemke, T. (2011). The feeling of action tendencies: on the emotional regulation of goal–directed behavior. Frontiers in Psychology,2, 346.

    Google Scholar 

  • Ma, Z., Turrigiano, G. G., Wessel, R., & Hengen, K. B. (2019). Cortical circuit dynamics are homeostatically tuned to criticality in vivo. Neuron,104(4), 655–664.

    Google Scholar 

  • Malach, R. (2012). Neuronal reflections and subjective awareness. In S. Edelman, T. Fekete, and N. Zach (Eds.), Being in time: Dynamical models of phenomenal experience, pp. 21–36. John Benjamins.

  • Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Marr, D., & Poggio, T. (1977). From understanding computation to understanding neural circuitry. Neurosciences Research Program Bulletin,15, 470–488.

    Google Scholar 

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports,438(5–6), 237–329.

    MathSciNet  Google Scholar 

  • Mediano, P., Seth, A., & Barrett, A. (2019). Measuring integrated information: Comparison of candidate measures in theory and simulation. Entropy,21(1), 17.

    Google Scholar 

  • Metzinger, T. (2003). Being no one: The self-model theory of subjectivity. Cambridge, MA: MIT Press.

    Google Scholar 

  • Metzinger, T. (2007). Self models. Scholarpedia,2(10), 4174.

    Google Scholar 

  • Metzinger, T. (2018). Splendor and misery of self-models: Conceptual and empirical issues regarding consciousness and self-consciousness. ALIUS Bulletin 1(2), 53–73. Interviewed by J. Limanowski and R. Milliere.

  • Minsky, M. (1985). The society of mind. New York: Simon and Schuster.

    Google Scholar 

  • Moyal, R., & Edelman, S. (2019). Dynamic computation in visual thalamocortical networks. Entropy,21(5), 500.

    MathSciNet  Google Scholar 

  • Müller, V., Lutzenberger, W., Preißl, H., Pulvermüller, F., & Birbaumer, N. (2003). Complexity of visual stimuli and non-linear EEG dynamics in humans. Cognitive Brain Research,16(1), 104–110.

    Google Scholar 

  • Noble, D. (2008). Claude Bernard, the first systems biologist, and the future of physiology. Experimental Physiology,93(1), 16–26.

    Google Scholar 

  • O’Brien, G., & Opie, J. (1999). A connectionist theory of phenomenal experience. Behavioral and Brain Sciences,22(1), 127–148.

    Google Scholar 

  • Oizumi, M., Albantakis, L., & Tononi, G. (2014). From the phenomenology to the mechanisms of consciousness: Integrated information theory 3.0. PLoS Computational Biology,10(5), e1003588.

    Google Scholar 

  • Op de Beeck, H. O., Wagemans, J., & Vogels, R. (2001). Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nature Neuroscience,4(12), 1244.

    Google Scholar 

  • Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences,21(5), 357–371.

    MathSciNet  Google Scholar 

  • Pierson, L. M., & Trout, M. (2017). What is consciousness for? New Ideas in Psychology,47, 62–71.

    Google Scholar 

  • Poggio, T. (2012). The levels of understanding framework, revised. Perception,41(9), 1017–1023.

    Google Scholar 

  • Rabinovich, M., Huerta, R., & Laurent, G. (2008a). Transient dynamics for neural processing. Science,321, 48–50.

    Google Scholar 

  • Rabinovich, M. I., Huerta, R., Varona, P., & Afraimovich, V. S. (2008b). Transient cognitive dynamics, metastability, and decision making. PLoS Computational Biology,4(5), e1000072.

    MathSciNet  Google Scholar 

  • Rabinovich, M. I., Simmons, A. N., & Varona, P. (2015a). Dynamical bridge between brain and mind. Trends in Cognitive Sciences,19(8), 453–461.

    Google Scholar 

  • Rabinovich, M. I., Tristan, I., & Varona, P. (2015b). Hierarchical nonlinear dynamics of human attention. Neuroscience and Biobehavioral Reviews,55, 18–35.

    Google Scholar 

  • Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H. D. I., & Laurent, G. (2001). Dynamical encoding by networks of competing neuron groups: Winnerless competition. Physical Review Letters,87(6), 068102.

    Google Scholar 

  • Rudrauf, D., Lutz, A., Cosmelli, D., Lachaux, J. P., & Le Van Quyen, M. (2003). From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being. Biological Research,36(1), 27–65.

    Google Scholar 

  • Scarpetta, S., Apicella, I., Minati, L., & de Candia, A. (2018). Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network. Physical Review E,97(6), 062305.

    Google Scholar 

  • Schwappach, C., Hutt, A., & Beim Graben, P. (2015). Metastable dynamics in heterogeneous neural fields. Frontiers in Systems Neuroscience,9, 97.

    Google Scholar 

  • Shalizi, C. R. (2001). Causal architecture, complexity and self-organization in the time series and cellular automata. Doctoral dissertation, University of Wisconsin-Madison.

  • Shalizi, C. R. (2004). Functionalism, emergence, and collective coordinates: A statistical physics perspective on “What to say to a skeptical metaphysician”. Behavioral and Brain Science,27(5), 635–636.

    Google Scholar 

  • Shalizi, C. R., & Moore, C. (2003). What is a macrostate? Subjective observations and objective dynamics. arXiv preprint cond-mat/0303625.

  • Shanahan, M. (2010). Metastable chimera states in community-structured oscillator networks. Chaos: An Interdisciplinary Journal of Nonlinear Science,20(1), 013108.

    MathSciNet  Google Scholar 

  • Shepard, R. N. (1968). Cognitive psychology: A review of the book by U. Neisser. The American Journal of Psychology,81, 285–289.

    Google Scholar 

  • Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology,1(1), 1–17.

    Google Scholar 

  • Siegelmann, H. T., & Fishman, S. (1998). Analog computation with dynamical systems. Physica D: Nonlinear Phenomena,120(1–2), 214–235.

    MATH  Google Scholar 

  • Silberstein, M., & McGeever, J. (1999). The search for ontological emergence. Philosophical Quarterly,49(195), 201–214.

    Google Scholar 

  • Sinai, Y. G. (1959). On the notion of entropy of a dynamical system. In Dokl. Akad. Nauk. SSSR (Vol. 124, p. 768).

  • Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., & Ringach, D. L. (2008). Topological analysis of population activity in visual cortex. Journal of Vision,8(8), 11.

    Google Scholar 

  • Sloman, A., R. Chrisley, & M. Scheutz (2005). The architectural basis of affective states and processes. In J. Fellous and M. A. Arbib (Eds.), Who needs emotions? The brain meets the robot, pp. 203–244. Oxford University Press.

  • Smart, J. J. (2004). The identity theory of mind. Stanford Encyclopedia of Philosophy.

  • Sperry, R. W. (1969). A modified concept of consciousness. Psychological Review,76(6), 532.

    Google Scholar 

  • Sperry, R. W. (1970). An objective approach to subjective experience: Further explanation of a hypothesis. Psychological Review,77, 585–590.

    Google Scholar 

  • Spivey, M. J. (2006). The continuity of mind. New York: Oxford University Press.

    Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., et al. (2012). Detecting causality in complex ecosystems. Science,338, 496–500.

    MATH  Google Scholar 

  • Sulam, J., Romano, Y., & Talmon, R. (2017). Dynamical system classification with diffusion embedding for ECG-based person identification. Signal Processing,130, 403–411.

    Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366–381). Springer, Berlin.

  • Talmon, R., & Coifman, R. R. (2013). Empirical intrinsic geometry for nonlinear modeling and time series filtering. Proceedings of the National Academy of Sciences,110(31), 12535–12540.

    Google Scholar 

  • Talmon, R., & Coifman, R. R. (2015). Intrinsic modeling of stochastic dynamical systems using empirical geometry. Applied and Computational Harmonic Analysis,39(1), 138–160.

    MathSciNet  MATH  Google Scholar 

  • Talmon, R., Mallat, S., Zaveri, H., & Coifman, R. R. (2015). Manifold learning for latent variable inference in dynamical systems. IEEE Transactions on Signal Processing,63(15), 3843–3856.

    MathSciNet  MATH  Google Scholar 

  • Thompson, R. C., & Ballou, J. E. (1956). Studies of metabolic turnover with tritium as a tracer. 5. The predominantly non-dynamic state of body constituents in the rat. Journal of Biological Chemistry,223, 795–809.

    Google Scholar 

  • Thompson, E., & Varela, F. J. (2001). Radical embodiment: neural dynamics and consciousness. Trends in Cognitive Sciences,5(10), 418–425.

    Google Scholar 

  • Tognoli, E., & Kelso, J. S. (2013). On the brain’s dynamical complexity: coupling and causal influences across spatiotemporal scales. In Advances in Cognitive Neurodynamics (III) (pp. 259–265). Springer, Dordrecht.

  • Tognoli, E., & Kelso, J. S. (2014). The metastable brain. Neuron,81(1), 35–48.

    Google Scholar 

  • Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences,10(11), 502–511.

    Google Scholar 

  • Tononi, G. (2008). Consciousness as integrated information: A provisional manifesto. The Biological Bulletin,215(3), 216–242.

    Google Scholar 

  • Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: from consciousness to its physical substrate. Nature Reviews Neuroscience,17(7), 450.

    Google Scholar 

  • Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences,91(11), 5033–5037.

    Google Scholar 

  • Tsuda, I. (1991). Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures J Gen Evol,32(2–3), 167–184.

    Google Scholar 

  • Tsuda, I. (1996). A new type of self-organization associated with chaotic dynamics in neural networks. International Journal of Neural Systems,7(04), 451–459.

    Google Scholar 

  • Tsuda, I. (2015). Chaotic itinerancy and its roles in cognitive neurodynamics. Current opinion in neurobiology,31, 67–71.

    Google Scholar 

  • Tsuda, I., Koerner, E., & Shimizu, H. (1987). Memory dynamics in asynchronous neural networks. Progress of Theoretical Physics,78(1), 51–71.

    Google Scholar 

  • van Leeuwen, C. (2007). What needs to emerge to make you conscious? Journal of Consciousness Studies,14(1–2), 115–136.

    Google Scholar 

  • Yablo, S. (1992). Mental causation. The Philosophical Review,101(2), 245–280.

    Google Scholar 

  • Yair, O., Talmon, R., Coifman, R. R., & Kevrekidis, I. G. (2017). Reconstruction of normal forms by learning informed observation geometries from data. Proceedings of the National Academy of Sciences,114(38), E7865–E7874.

    MathSciNet  MATH  Google Scholar 

  • Ye, H., Deyle, E. R., Gilarranz, L. J., & Sugihara, G. (2015). Distinguishing time-delayed causal interactions using convergent cross mapping. Scientific Reports,5, 14750.

    Google Scholar 

  • Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology. Discrete & Computational Geometry,33(2), 249–274.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Reza Shahbazi for comments on an early draft of this paper, Carsten Allefeld for a useful discussion, and the anonymous reviewers for constructive engagement and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Edelman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyal, R., Fekete, T. & Edelman, S. Dynamical Emergence Theory (DET): A Computational Account of Phenomenal Consciousness. Minds & Machines 30, 1–21 (2020). https://doi.org/10.1007/s11023-020-09516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-020-09516-9

Keywords

Navigation