Skip to main content

Advertisement

Log in

Perfect Strategies for Non-Local Games

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We describe the main classes of non-signalling bipartite correlations in terms of states on operator system tensor products. This leads to the introduction of another new class of games, called reflexive games, which are characterised as the hardest non-local games that can be won using a given set of strategies. We provide a characterisation of their perfect strategies in terms of operator system quotients. We introduce a new class of non-local games, called imitation games, in which the players display linked behaviour, and which contain as subclasses the classes of variable assignment games, binary constraint system games, synchronous games, many games based on graphs, and unique games. We associate a C*-algebra \(C^{*}(\mathcal {G})\) to any imitation game \(\mathcal {G}\), and show that the existence of perfect quantum commuting (resp. quantum, local) strategies of \(\mathcal {G}\) can be characterised in terms of properties of this C*-algebra. We single out a subclass of imitation games, which we call mirror games, and provide a characterisation of their quantum commuting strategies that has an algebraic flavour, showing in addition that their approximately quantum perfect strategies arise from amenable traces on the encoding C*-algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atserias, A., Mančinska, L., Roberson, D.E., Šámal, R., Severini, S., Varvitsiotis, A.: Quantum and non-signalling graph isomorphisms. J. Comb. Theory B 136, 289–328 (2019)

    Article  MathSciNet  Google Scholar 

  2. Brown, N.P., Ozawa, N.: C*-algebras and finite-dimensional approximations. American Mathematical Society (2008)

  3. Cameron, P.J., Montanaro, A., Newman, M.W., Severini, S., Winter, A.: On the quantum chromatic number of a graph. Electron. J. Comb. 14(1), 81 (2007)

    Article  MathSciNet  Google Scholar 

  4. Choi, M.D., Effros, E.G.: Injectivity and operator spaces. J. Funct. Anal. 24, 156–209 (1977)

    Article  MathSciNet  Google Scholar 

  5. Cleve, R., Liu, L., Slofstra, W.: Perfect commuting-operator strategies for linear system games. J. Math. Phys. 58, 012202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cleve, R., Mittal, R.: Characterization of binary constraint system games, Automata, languages, and programming. Part I, Lecture Notes in Comput. Sci., vol. 8572, Springer, pp. 320–33 (2014)

  7. Connes, A.: Classification of injective factors. Ann. of Math. (2) 104, 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  8. Cook, W.D., Webster, R.J.: Carathéodory’s theorem. Canad. Math. Bull. 15, 293–293 (1972)

    Article  MathSciNet  Google Scholar 

  9. Cubitt, T.S., Leung, D., Matthews, W., Winter, A.: Improving zero-error classical communication with entanglement. Phys. Rev. Lett. 104, 230503 (2010)

    Article  ADS  Google Scholar 

  10. Dykema, K., Paulsen, V.I., Prakash, J.: Non-closure of the set of quantum correlations via graphs. Quantum Inf. Comput. 18, 599–616 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Effros, E.G., Ruan, Z.h.-J.: Operator spaces. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  12. Farenick, D., Kavruk, A., Paulsen, V.I., Todorov, I.G.: Operator systems from discrete groups. Comm. Math. Phys. 329, 207–238 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Farenick, D., Kavruk, A., Paulsen, V.I., Todorov, I.G.: Characterizations of the weak expectation property, New York. J. Math. 24A, 107–135 (2018)

    MATH  Google Scholar 

  14. Farenick, D., Paulsen, V.I.: Operator system quotients of matrix algebras and their tensor products. Math. Scand. 111, 210–243 (2012)

    Article  MathSciNet  Google Scholar 

  15. Fritz, T.: Operator system structures on the unital direct sum of C*-algebras, Rocky Mountain. J. Math. 44(3), 913–936 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Helton, J.W., Meyer, K.P., Paulsen, V.I., Satriano, M.: Algebras, synchronous games, and chromatic numbers of graphs, New York. J. Math. 25, 328–361 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Holevo, A.S.: Quantum systems, channels, information. De Gruyter, Berlin (2013)

    Google Scholar 

  18. Junge, M., Navascues, M., Palazuelos, C., Perez-Garcia, D., Scholtz, V.B., Werner, R.F.: Connes’ embedding problem and Tsirelson’s problem. J. Math. Phys. 52, 012102 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kavruk, A.S.: Nuclearity related properties in operator systems. J. Operator Theory 71(1), 95–156 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kavruk, A., Paulsen, V.I., Todorov, I.G., Tomforde, M.: Tensor products of operator systems. J. Funct. Anal. 261(2), 267–299 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kavruk, A.S., Paulsen, V.I., Todorov, I.G., Tomforde, M.: Quotients, exactness, and nuclearity in the operator system category. Adv. Math. 235, 321–360 (2013)

    Article  MathSciNet  Google Scholar 

  22. Kim, S.-J., Paulsen, V.I., Schafhauser, C.: A synchronous game for binary constraint systems. J. Math. Phys. 59(3), 032201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lami, L.: Non-classical correlations in quantum mechanics and beyond, PhD thesis. arXiv:1803.02902

  24. Mančinska, L., Roberson, D.E.: Quantum homomorphisms. J. Combin. Theory Ser. B 118, 228–267 (2016)

    Article  MathSciNet  Google Scholar 

  25. Mančinska, L., Vidick, T.: Unbounded entanglement in nonlocal games. Quantum Inf. Comput. 15(15-16), 1317–1332 (2015)

    MathSciNet  Google Scholar 

  26. Roberson, D.E.: Variations on a theme: Graph homomorphisms, Ph.D. thesis, University of Waterloo (2013)

  27. Ortiz, C.M., Paulsen, V.I.: Quantum graph homomorphisms via operator systems. Linear Algebra Appl. 497, 23–43 (2016)

    Article  MathSciNet  Google Scholar 

  28. Ozawa, N.: About the Connes’ embedding problem–algebraic approaches. Japan J. Math. 8(1), 147–183 (2013)

    Article  Google Scholar 

  29. Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57(1), 015220 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Paulsen, V.I.: Completely bounded maps and operator algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  31. Paulsen, V.I., Severini, S., Stahlke, D., Todorov, I.G., Winter, A.: Estimating quantum chromatic numbers. J. Funct. Anal. 270(6), 2188–2222 (2016)

    Article  MathSciNet  Google Scholar 

  32. Paulsen, V.I., Todorov, I.G.: Quantum chromatic numbers via operator systems. Q. J. Math. 66(2), 677–692 (2015)

    Article  MathSciNet  Google Scholar 

  33. Pisier, G.: Introduction to operator space theory. Cambridge University Press, Cambridge (2003)

  34. Ramana, M.V., Scheinerman, E.R., Ullman, D.: Fractional isomorphism of graphs. Discrete Math. 132(1-3), 247–265 (1994)

    Article  MathSciNet  Google Scholar 

  35. Rao, A.: Parallel repetition in projection games and a concentration bound. SIAM J. Comput. 40(6), 1871–1891 (2011)

    Article  MathSciNet  Google Scholar 

  36. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games, J. Amer. Math. Soc., in press. arXiv:1606.03140

  37. Slofstra, W.: The set of quantum correlations is not closed, . Forum Math. Pi 7(e1), 41 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Slofstra, W., Vidick, T.: Entanglement in non-local games and the hyperlinear profile of groups. Ann. Henri Poincaré 19(10), 2979–3005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(4), 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  40. Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8(4), 329–345 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Part of this research was conducted during two Focused Research Meetings, funded by the Heilbronn Institute, and hosted at Queen’s University Belfast in October 2016 and March 2017. M. Lupini was partially supported by the NSF grant DMS-1600186. G. Scarpa acknowledges the support of MTM2014-54240-P (MINECO), QUITEMAD+-CM Reference: S2013/ICE-2801 (Comunidad de Madrid), ICMAT Severo Ochoa project SEV-2015-0554 (MIN-ECO), and grant 48322 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lupini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupini, M., Mančinska, L., Paulsen, V.I. et al. Perfect Strategies for Non-Local Games. Math Phys Anal Geom 23, 7 (2020). https://doi.org/10.1007/s11040-020-9331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-020-9331-7

Keywords

Navigation