Skip to main content
Log in

KPZ Equation Limit of Stochastic Higher Spin Six Vertex Model

  • Original Research
  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider the stochastic higher spin six vertex (SHS6V) model introduced by Corwin and Petrov (Commun. Math. Phys., 343(2), 651–700 2016) with general integer spin parameters I, J. Starting from near stationary initial condition, we prove that the SHS6V model converges to the Kardar-Parisi-Zhang (KPZ) equation under weakly asymmetric scaling. This generalizes the result in Corwin et al. (2018, Theorem 1.1) from I = J = 1 to general I, J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, vol. 71. Cambridge University Press (2000)

  2. Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J. 167(2), 269–384 (2018)

    Article  MathSciNet  Google Scholar 

  3. Aggarwal, A.: Dynamical stochastic higher spin vertex models. Sel. Math., New Ser. 24(3), 2659–2735 (2018)

    Article  MathSciNet  Google Scholar 

  4. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A, Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Commun. Math. Phys. 339(3), 1167–1245 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Correction to: Spectral theory for interacting particle systems solvable by coordinate bethe ansatz. Commun. Math. Phys. 370(3), 1069–1072 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bertini, L., Giacomin, G.: Stochastic burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. Borodin, A., Gorin, V.: A stochastic telegraph equation from the six-vertex model. arXiv:1803.09137 (2018)

  9. Billingsley, P: Convergence of Probability Measures. Wiley (2013)

  10. Baik, J., Liu, Z.: Multipoint distribution of periodic TASEP. Journal of the American Mathematical Society (2019)

  11. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017)

    Article  MathSciNet  Google Scholar 

  12. Borodin, A: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Sel. Math. New Ser. 24(2), 751–874 (2018)

    Article  MathSciNet  Google Scholar 

  14. Carinci, G., Giardinà, C., Redig, F., Sasamoto, T.: A generalized asymmetric exclusion process with Uq(sl2) stochastic duality. Probab. Theory Relat. Fields 166(3–4), 887–933 (2016)

    Article  Google Scholar 

  15. Corwin, I., Ghosal, P., Shen, H., Tsai, L.-C.: Stochastic PDE limit of the six vertex model. arXiv:1803.08120 (2018)

  16. Corwin, I: The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl. 1(01), 1130001 (2012)

    Article  MathSciNet  Google Scholar 

  17. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Corwin, I., Petrov, L.: Correction to: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 371(1), 353–355 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Corwin, I., Shen, H.: Open ASEP in the weakly asymmetric regime. Commun. Pure Appl. Math. 71(10), 2065–2128 (2018)

    Article  MathSciNet  Google Scholar 

  20. Corwin, I., Shen, H., Tsai, L.-C.: ASEP(q, j) converges to the KPZ equation. Annales de l’Institut Henri Poincaré Probabilités et Statistiques 54(2), 995–1012 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Corwin, I., Tsai, L.-C.: KPZ equation limit of higher-spin exclusion processes. Ann. Probab. 45(3), 1771–1798 (2017)

    Article  MathSciNet  Google Scholar 

  22. Dauvergne, D., Ortmann, J., Virág, B.: The directed landscape. arXiv:1812.00309 (2018)

  23. Dembo, A., Tsai, L.-C.: Weakly asymmetric non-simple exclusion process and the Kardar–Parisi–Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ghosal, P.: Hall-Littlewood-PushTASEP and its KPZ limit. arXiv:1701.07308 (2017)

  25. Gonçalves, P, Jara, M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212(2), 597–644 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gubinelli, M., Perkowski, N.: KPZ reloaded. Commun. Math. Phys. 349 (1), 165–269 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gubinelli, M., Perkowski, N.: Energy solutions of KPZ are unique. J. Am. Math. Soc. 31(2), 427–471 (2018)

    Article  MathSciNet  Google Scholar 

  28. Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68(6), 725 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hairer, M.: A theory of regularity structures. Inventiones Mathematicae 198 (2), 269–504 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Imamura, T., Mucciconi, M., Sasamoto, T.: Stationary Higher Spin Six Vertex Model and q-Whittaker measure. arXiv:1901.08381 (2019)

  31. Krug, J., Meakin, P., Halpin-Healy, T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45(2), 638 (1992)

    Article  ADS  Google Scholar 

  32. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889 (1986)

    Article  ADS  Google Scholar 

  33. Kirillov, A.N., Reshetikhin, N.Yu: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A Math. Gen. 20(6), 1565 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kuan, J.: A multi-species ASEP and-TAZRP with stochastic duality. Int. Math. Res. Not. 2018(17), 5378–5416 (2017)

    Article  MathSciNet  Google Scholar 

  35. Kuan, J.: An algebraic construction of duality functions for the stochastic \(U_{q} ({A_{n}^{1}})\) vertex model and its degenerations. Commun. Math. Phys. 359(1), 121–187 (2018)

    Article  MathSciNet  Google Scholar 

  36. Labbé, C.: Weakly asymmetric bridges and the KPZ equation. Commun. Math. Phys. 353(3), 1261–1298 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Liggett, T.M: Interacting Particle Systems, vol. 276. Springer Science & Business Media (2012)

  38. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, vol. 324. Springer Science & Business Media (2013)

  39. Lin, Y.: Markov duality for stochastic six vertex model. Electron. Commun. Probab. 24(67), 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Mangazeev, V.V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  41. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2016)

  42. Mueller, C.: On the support of solutions to the heat equation with noise. Stochastics: Int. J. Probab. Stoch. Process. 37(4), 225–245 (1991)

    MathSciNet  MATH  Google Scholar 

  43. Orr, D., Petrov, L.: Stochastic higher spin six vertex model and q-TASEPs. Adv. Math. 317, 473–525 (2017)

    Article  MathSciNet  Google Scholar 

  44. Parekh, S.: The KPZ limit of ASEP with boundary. Commun. Math. Phys. 365(2), 569–649 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57(12), 2680–2684 (1935)

    Article  Google Scholar 

  46. Quastel, J: Introduction to KPZ. Curr. Develop. Math., 2011(1) (2011)

  47. Spohn, H.: KPZ scaling theory and the semidiscrete directed polymer model. Random Matrix Theory, Interacting Particle Systems and Integrable Systems, 65 (2012)

  48. Shen, H., Tsai, L.-C.: Stochastic telegraph equation limit for the stochastic six vertex model. Proc. Am. Math. Soc. 147(6), 2685–2705 (2019)

    Article  MathSciNet  Google Scholar 

  49. Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279(3), 815–844 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author heartily thanks his advisor Ivan Corwin for suggesting this problem, his encouragement and helpful discussion, as well as reading part of the manuscript. We thank Jeffrey Kuan for the helpful discussion over the degeneration of [35, Theorem 4.10] to the stochastic higher spin six vertex model. We also wish to thank Promit Ghosal and Li-Cheng Tsai, who provided very useful discussions about the technical part of the paper. We are also grateful to two anonymous referees for their valuable suggestions. The author was partially supported by the Fernholz Foundation’s “Summer Minerva Fellow” program and also received summer support from Ivan Corwin’s NSF grant DMS:1811143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yier Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Stationary Distribution of the SHS6V Model

In this section, we provide a one parameter family of stationary distribution for the unfused SHS6V model. It is worth to remark that in the recent work of [30], a translation-invariant Gibbs measure was obtained (using the idea from [2]) for the space-time inhomogeneous SHS6V model on the full lattice, see Proposition 4.5 of [30]. However, It is not obvious that the dynamic of SHS6V model under this Gibbs measure coincides with the one of the bi-infinite SHS6V model specified in Lemma 2.1. This being the case, we choose to proceed without relying on the result from [30].

We start with a well-known combinatoric lemma.

Lemma A.1 (q-binomial formula)

Set ν = qIas usual, the following identity holds for all\(q \in \mathbb {C}\),

$$ \sum\limits_{n=0}^{I} \frac{(\nu; q)_{n}}{(q; q)_{n}} z^{n} = \frac{(\nu z; q)_{\infty}}{(z; q)_{\infty}}. $$

Proof

According to q-binomial theorem [1],

$$ \sum\limits_{n=0}^{\infty} \frac{(\nu; q)_{n}}{(q; q)_{n}} z^{n} = \frac{(\nu z; q)_{\infty}}{(z; q)_{\infty}}. $$

When ν = qI, (ν, q)n = 0 for n > I. Therefore,

$$ \sum\limits_{n=0}^{I} \frac{(\nu; q)_{n}}{(q; q)_{n}} z^{n} = \sum\limits_{n=0}^{\infty} \frac{(\nu; q)_{n}}{(q; q)_{n}} z^{n}= \frac{(\nu z; q)_{\infty}}{(z; q)_{\infty}}. $$

Lemma A.2

Fix q > 1, ν = qIand ρ ∈ (0, I), define a probability measure πρon\(\{0, 1, \dots , I\}\):

$$ \pi_\rho (i) = \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \frac{(\nu, q)_{i}}{(q, q)_{i}} \chi^{i}, \quad i \in \{0, 1, \dots, I\}, $$
(A.1)

where χis the unique negative real number satisfying

$$ \sum\limits_{i=1}^{I} \frac{\chi}{\chi - q^{i}} = \rho. $$
(A.2)

Furthermore, we have

$$ \mathbb{E}\big[\pi_\rho \big] = \rho, \qquad \text{Var}\big[\pi_\rho \big] = \rho - \sum\limits_{i=1}^{I} \frac{\chi^{2}}{(q^{i} - \chi)^{2}}. $$

Proof

We first show that πρ is indeed a probability measure. It is clear that \(\pi _{\rho } (i) \geqslant 0\) for all \(i \in \{0, 1, \dots , I\}\). By Lemma A.1,

$$ \sum\limits_{i=0}^{I} \pi_\rho (i) = \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \sum\limits_{i=0}^{I} \frac{(\nu, q)_{i}}{(q, q)_{i}} \chi^{i} = \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \frac{(\nu \chi, q)_{\infty}}{(\chi, q)_{\infty}} = 1. $$

Next, we compute the expectation and the variance of πρ. Using again Lemma A.1, the moment generating function is given by

$$ \begin{array}{@{}rcl@{}} {\Lambda}(z) &=& \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \sum\limits_{i=0}^{I} \frac{(\nu, q)_{i}}{(q, q)_{i}} \chi^{i} z^{i} = \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \frac{(\nu \chi z, q)_{\infty}}{(\chi z, q)_{\infty}}\\ &=& \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \prod\limits_{i=1}^{I} (1 - \nu q^{i-1} \chi z). \end{array} $$
(A.3)

It is clear that

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\big[\pi_\rho \big] &= {\Lambda}^{\prime}(1),\\ \text{Var}\big[\pi_\rho \big] &= {\Lambda}^{\prime\prime}(1) + {\Lambda}^{\prime}(1) - {\Lambda}^{\prime}(1)^{2}. \end{array} $$

Via (A.3), one has

$$ \begin{array}{@{}rcl@{}} {\Lambda}^{\prime}(z) &=& \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \bigg(\prod\limits_{i=1}^{I} (1 - \nu q^{i-1} \chi z)\bigg) \bigg(\sum\limits_{i=1}^{I} \frac{-\nu q^{i-1} \chi}{1 - \nu q^{i-1} \chi z}\bigg),\\ {\Lambda}^{\prime\prime}(z) &=&\frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \bigg(\prod\limits_{i=1}^{I} (1 - \nu q^{i-1} \chi z)\bigg)\\ &&\times \bigg[\bigg(\sum\limits_{i=1}^{I} \frac{-\nu q^{i-1} \chi}{1 - \nu q^{i-1} \chi z}\bigg)^{2} - \sum\limits_{i=1}^{I} \frac{(\nu q^{i-1} \chi)^{2}}{(1 - \nu q^{i-1} \chi z)^{2}}\bigg]. \end{array} $$

Note that

$$ \frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \prod\limits_{i=1}^{I} (1 - \nu q^{i-1} \chi) = 1,$$

combining this with (A.2) yields

$$ {\Lambda}^{\prime}(1) = \rho, \qquad {\Lambda}^{\prime\prime}(1) = \rho^{2} - \sum\limits_{i=1}^{I} \frac{\chi^{2}}{(q^{i} - \chi)^{2}}, $$

which concludes the lemma. □

Theorem A.3

For ρ ∈ (0, I), the product measure\(\bigotimes \pi _{\rho }\)is stationary for the unfused SHS6V model\(\vec {\eta }(t)\) (Definition 2.3).

Proof

It suffices to show that if \(\vec {\eta }(t) \sim \bigotimes \pi _{\rho }\), then \(\vec {\eta }(t+1) \sim \bigotimes \pi _{\rho }\).

Recall that K(t, y) = N(t, y) − N(t + 1, y) records the number of particles (either zero or one) that move across location y at time t. We first show that \(K(t, y) \sim \text {Ber }(\frac {\alpha (t) \chi }{\alpha (t) \chi +1})\) (recall that α(t) = αqmod (t)). To this end, referring to (??),

$$ K(t, y) =\sum\limits_{y^{\prime} = -\infty}^{y} \prod\limits_{z = y^{\prime}+1}^{y} \bigg(B^{\prime}(t, z, \eta_{z} (t)) - B(t, z, \eta_{z} (t))\bigg) B(t, y^{\prime}, \eta_{y^{\prime}}(t)). $$
(A.4)

Recalling from (??), \(B(t, z, \eta ) \sim \text {Ber }\big (\frac {\alpha (t)(1 - q^{\eta })}{1 +\alpha (t)}\big ), B^{\prime }(t, z, \eta ) \sim \text {Ber }\big (\frac {\alpha (t) + \nu q^{\eta }}{1 +\alpha (t)}\big )\). Since the random variables \(B, B^{\prime }\) are all independent,

$$ \begin{array}{@{}rcl@{}} &&\mathbb{E}\bigg[\prod\limits_{z = y^{\prime}+1}^{y} \bigg(B^{\prime}(t, z, \eta_{z} (t)) - B(t, z, \eta_{z} (t))\bigg) B(t, y^{\prime}, \eta_{y^{\prime}}(t)) \bigg| \mathcal{F}(t)\bigg]\\ &=& \frac{\alpha(t) (1-q^{\eta_{y^{\prime}}(t)})}{1 + \alpha(t)} \prod\limits_{z = y^{\prime}+1}^{y} \frac{(\alpha(t) + \nu) q^{\eta_{z} (t)}}{1 + \alpha(t)}. \end{array} $$

Therefore, by tower property

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\big[K(t, y)\big] &=& \sum\limits_{y^{\prime} = -\infty}^{y} \mathbb{E} \bigg[\prod\limits_{z = y^{\prime}+1}^{y} \frac{\alpha(t) (1-q^{\eta_{y^{\prime}}(t)})}{1 + \alpha(t)} \prod\limits_{z = y^{\prime}+1}^{y} \frac{(\alpha(t) + \nu) q^{\eta_{z} (t)}}{1 + \alpha(t)}\bigg], \\ &=& \sum\limits_{y^{\prime} = -\infty}^{y} \frac{\alpha(t)}{1 + \alpha(t)} \bigg(\frac{\alpha(t) + \nu}{1 + \alpha(t)}\bigg)^{y- y^{\prime}} \big(\mathbb{E}\big[q^{\eta_{y}(t)}\big]\big)^{y- y^{\prime}} (1 - \mathbb{E}\big[q^{\eta_{y}(t)}\big]).\\ \end{array} $$
(A.5)

As \(\eta _{y} (t) \sim \pi _{\rho }\), we obtain using Lemma A.1

$$ \mathbb{E}\big[q^{\eta_{y} (t)}\big] =\frac{(\chi, q)_{\infty}}{(\chi \nu, q)_{\infty}} \sum\limits_{i=0}^{\infty} \frac{(\nu, q)_{i}}{(q, q)_{i}} (\chi q)^{i} = \frac{(\chi \nu q; q)_{\infty}}{(\chi q; q)_{\infty}} \frac{(\chi; q)_{\infty}}{(\chi \nu; q)_{\infty}} = \frac{1 - \chi}{1 - \chi \nu}. $$

Inserting the value of \(\mathbb {E}\big [q^{\eta _{y} (t)}\big ]\) into the RHS of (A.5) yields that

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\big[K(t, y)\big] &=& \sum\limits_{y^{\prime} = -\infty}^{y} \frac{\alpha(t)}{1 + \alpha(t)} \bigg(\frac{(\alpha(t) + \nu)(1-\chi)}{(1 + \alpha(t))(1-\chi\nu)}\bigg)^{y- y^{\prime}} \bigg(1 - \frac{1 - \chi}{1 - \chi \nu}\bigg)\\ &=& \frac{\alpha(t) \chi}{\alpha(t) \chi +1}. \end{array} $$

Since K(t, y) ∈{0, 1}, we conclude that

$$ K(t, y) \sim \text{Ber }(\frac{\alpha(t) \chi}{\alpha(t) \chi +1}). $$
(A.6)

The next step is to show that the marginal of \(\vec {\eta }(t+1)\) is distributed as πρ for each coordinate. Referring to (A.4), it is straightforward that the following recursion holds

$$ \begin{array}{@{}rcl@{}} K(t, y) = &B(t, y, \eta_{y} (t)) + \Big(B^{\prime}(t, y, \eta_{y} (t)) - B(t, y, \eta_{y} (t))\Big) K(t, y-1). \end{array} $$
(A.7)

Therefore,

$$ \begin{array}{@{}rcl@{}} \eta_{y} (t) - \eta_{y} (t+1) &=& N(t, y) - N(t, y-1) + N(t+1, y-1) - N(t+1, y) , \\ &=& K(t, y) - K(t, y-1), \\ &=& K(t, y-1) \Big(B^{\prime}(t, y, \eta_{y}(t)) - B(t, y, \eta_{y}(t)) - 1\Big)\\ &&+ B(t, y, \eta_{y} (t)). \end{array} $$

For the second equality above, we used K(t, y) = N(t, y) − N(t + 1, y). Therefore,

$$ \eta_{y} (t+1) = \left\{\begin{array}{llll} \eta_{y} (t) - B(t, y, \eta_{y} (t)), \qquad &K(t, y-1) = 0,\\ \eta_{y} (t) + 1 - B^{\prime}(t, y, \eta_{y} (t)), \qquad &K(t, y-1) = 1. \end{array}\right. $$
(A.8)

Due to (A.4), we see that \(K(t, y-1) \in \sigma \Big (B(t, z, \eta ), B^{\prime }(t, z, \eta ), \eta _{z}(t): z \leqslant y-1, \eta \in \{0, 1, \dots , I\} \Big )\). Note that we have assumed \(\vec {\eta }(t) \sim \bigotimes \pi _{\rho }\), which implies the independence between ηy(t) and ηz(t) for zy. Therefore, ηy(t) and K(t, y − 1) are independent. Using (A.8) we get

$$ \begin{array}{@{}rcl@{}} \mathbb{P}\big(\eta_{y} (t+1) = i\big) &=& \mathbb{P}\big(K(t, y-1) = 0\big) \mathbb{P}\big(\eta_{y} (t) - B(t, y, \eta_{y} (t)) = i\big)\\ &&+\mathbb{P}\big(K(t, y-1) = 1\big) \mathbb{P}\big(\eta_{y} (t) - B^{\prime}(t, y, \eta_{y} (t)) = i-1\big). \end{array} $$

By \(K(t, y-1) \sim \text {Ber }(\frac {\alpha (t) \chi }{\alpha (t) \chi +1})\) and \(\eta _{y} (t) \sim \pi _{\rho }\), one readily has

$$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\big(\eta_{y} (t+1) = i\big)\\ &=& \frac{1}{1 + \alpha(t) \chi} \bigg[\pi_\rho (i) \frac{1 + \alpha(t) q^{i}}{1 + \alpha(t)} + \pi_\rho (i+1) \frac{\alpha(t) (1 - q^{i+1})}{1 +\alpha(t)}\bigg]\\ &&+ \frac{\alpha(t) \chi}{1 + \alpha(t) \chi} \bigg[\pi_\rho (i) \frac{\alpha(t) + \nu q^{i}}{1 +\alpha(t)} + \pi_\rho (i-1) \frac{1 - \nu q^{i-1}}{1 + \alpha(t)}\bigg]\\ &=& \pi_\rho (i). \end{array} $$

To conclude Theorem A.3, it suffices to show the independence among ηy(t + 1) for different value of y. It is enough to show that

$$ \eta_{y} (t+1) \text{ is independent with } \{\eta_{y+1} (t+1), \eta_{y+2}(t+1), \dots\} \text{ for all } y \in \mathbb{Z}. $$
(A.9)

We need the following lemma.

Lemma A.4

For all\(y \in \mathbb {Z}\), ηy(t + 1) is independent with K(t, y).

Let us first see how this lemma leads to (A.9). We have via (A.4),

$$K(t, y) \in \sigma\Big(B(t, z, \eta), B^{\prime}(t, z, \eta), \eta_{z} (t): z \leqslant y, \eta \in \{0, 1, \dots, I\}\Big).$$

Combining this with (A.8),

$$\eta_{y}(t+1) \in \sigma\Big(B(t, z, \eta), B^{\prime}(t, z, \eta), \eta_{z} (t): z \leqslant y, \eta \in \{0, 1, \dots, I\}\Big).$$

Since ηi(t) are all independent for different i, one has

$$ \begin{array}{@{}rcl@{}} &&\Big(B(t, z, \eta), B^{\prime}(t, z, \eta), \eta_{z} (t): z \leqslant y, \eta \in \{0, 1, \dots, I\}\Big) \text{ is independent with }\\ &&(\eta_{y+1}(t), \eta_{y+2}(t), \dots). \end{array} $$

We achieve

$$ \big(K(t, y), \eta_{y} (t+1)\big) \text{ is independent with } \big(\eta_{y+1}(t), \eta_{y+2} (t), {\dots} \big). $$

Using Lemma A.4, we conclude

$$ \eta_{y}(t+1) \text{ is independent with } \big(K(t, y), \eta_{y+1}(t), \eta_{y+2}(t), {\dots} \big). $$

Therefore,

$$ \begin{array}{@{}rcl@{}} &&\eta_{y}(t+1) \text{ is independent with } \sigma\Big(K(t, y), \eta_{z}(t), B(t, z, \eta), B^{\prime}(t, z, \eta): z \!\geqslant\! y+1,\\ &&\eta \in \{0, 1, \dots, I\}\Big). \end{array} $$
(A.10)

On the other hand, by (A.7) and (A.8), we conclude for all \(y \in \mathbb {Z}\)

$$ \begin{array}{@{}rcl@{}} \big(\eta_{y+1}(t+1), \eta_{y+2}(t+1), {\dots} \big) &\in& \sigma\Big(K(t, y), B(t, z, \eta), B^{\prime}(t, z, \eta),\eta_{z}(t): z \geqslant y\\ &&\quad +1, \eta \in \{0, 1, \dots, I\}\Big). \end{array} $$
(A.11)

Combining (A.10) and (A.11), we find that for all \(y \in \mathbb {Z}\)

$$ \eta_{y} (t+1) \text{ is independent with } \big(\eta_{y+1}(t+1), \eta_{y+2}(t+1), {\dots} \big), $$

which concludes (A.9). □

Proof of Lemma A.4

As K(t, y) ∈{0, 1}, it suffices to show that for all \(j \in \{0, 1, \dots , I\}\), one has

$$ \mathbb{P}\big(\eta_{y}(t+1) = j, K(t, y) = 1\big) = \mathbb{P}\big(\eta_{y}(t+1) = j\big) \mathbb{P}\big(K(t, y) = 1 \big). $$

Due to (A.7),

$$ K(t, y) = \left\{\begin{array}{llll} B(t, y, \eta_{y} (t)), \qquad &K(t, y-1) = 0,\\ B^{\prime}(t, y, \eta_{y} (t)), \qquad &K(t, y-1) = 1. \end{array}\right. $$

Together with (A.8), we obtain that if K(t, y − 1) = 0,

$$ \big(\eta_{y} (t+1), K(t, y)\big) = (j, 1) \text{ is equivalent to } \big(\eta_{y} (t), B(t, y, \eta_{y} (t))\big) = (j+1, 1). $$

If K(t, y − 1) = 1,

$$ \big(\eta_{y} (t+1), K(t, y)\big) = (j, 1) \text{ is equivalent to } \big(\eta_{y} (t), B(t, y, \eta_{y} (t))\big) = (j, 1). $$

The discussion above yields (using the independence between ηy(t) and K(t, y − 1))

$$ \begin{array}{@{}rcl@{}} &&\mathbb{P}\big(\eta_{y} (t+1) = j, K(t, y) = 1\big), \\ &=& \mathbb{P}\big(K(t, y-1) = 0\big) \mathbb{P}\big(\eta_{y} (t) = j+1, B(t, y, \eta_{y} (t)) = 1\big) + \mathbb{P}\big(K(t, y-1) = 1\big) \\ &&\times \mathbb{P}\big(\eta_{y} (t) = j, B^{\prime}(t, y, \eta_{y} (t)) = 1\big),\\ &=& \frac{1}{1 + \alpha(t) \chi} \frac{\alpha(t) (1- q^{j+1})}{1 + \alpha(t)} \pi_\rho (j+1) + \frac{\alpha(t) \chi}{1 + \alpha(t) \chi} \frac{\alpha(t) + \nu q^{j}}{1 + \alpha(t)} \pi_\rho (j), \\ &=& \frac{\alpha(t) \chi \pi_\rho(j) }{\alpha(t) \chi +1} = \mathbb{P}\big(\eta_{y+1} (t+1) = j\big) \mathbb{P}\big(K(t, y) = 1\big), \end{array} $$

which concludes Lemma A.4. □

Remark A.5

Since \(\vec {g}(t) = \vec {\eta }(Jt)\), it is clear that for all ρ ∈ (0, I), \(\bigotimes \pi _{\rho }\) is also stationary for the fused SHS6V model \(\vec {g}(t)\).

Appendix B: KPZ Scaling Theory

The KPZ scaling theory has been developed in a landmark contribution by [31]. The scaling theory is a physics approach which makes prediction for the non-universal coefficients of the KPZ equation. In this appendix, we show how the coefficients of the KPZ (??) arise from the microscopic observables of the fused SHS6V model using the KPZ scaling theory.

Recall that Theorem 1.6 reads

$$ \begin{array}{@{}rcl@{}} &&\sqrt{\epsilon} \big(N^{\mathsf{f}}_{\epsilon} (\epsilon^{-2} t, \epsilon^{-1} x + \epsilon^{-2} \mu_{\epsilon} t ) - \rho (\epsilon^{-1} x + \epsilon^{-2} \mu_{\epsilon} t ) - t \log \lambda_{\epsilon} \big)\\ &&\Rightarrow \mathcal{H}(t, x) \text{ in } C([0, \infty), C(\mathbb{R})) \text{ as } \epsilon \downarrow 0. \end{array} $$

Here, \(N^{\mathsf {f}}_{\epsilon } (t, x)\) is the fused height function and \({\mathscr{H}}(t, x)\) solves the KPZ equation

$$ \begin{array}{@{}rcl@{}} \partial_{t} \mathcal{H}(t, x) = \frac{\alpha_{1}}{2} {\partial_{x}^{2}} \mathcal{H}(t, x) - \frac{\alpha_{2}}{2} \big(\partial_{x} \mathcal{H}(t, x) \big)^{2} + \sqrt{\alpha_{3}} \xi(t, x), \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} \alpha_{1} &=& \alpha_{2} = JV_{*} = \frac{J\big((I +J)b - (I + J - 2)\big)}{I^{2} (1-b)},\\ \alpha_{3} &=& J D_{*} = \frac{\rho(I-\rho)}{I} \cdot \frac{J \big((I + J) b - (I + J -2)\big)}{I^{2} (1-b)}. \end{array} $$

The first step in the KPZ scaling theory is to derive the stationary distribution of the fused SHS6V model, which is exactly what we did in Appendix A (see Remark A.5). Under stationary distribution \(\bigotimes \pi _{\rho }\), we proceed to define two natural quantities of the models:

  • The average steady state currentj(ρ) is defined as

    $$ j(\rho) = \epsilon^{-\frac{1}{2}} \big(\big\langle N^{\mathsf{f}}(t, x) - N^{\mathsf{f}}(t, x+1) \big\rangle_{\rho} - \rho \mu_{\epsilon}\big), $$
    (B.1)

    where 〈⋅〉ρ means that we are taking the expectation under stationary distribution \(\bigotimes \pi _{\rho }\) and μ is given in (??). Note that under stationary distribution, the average steady state current j(ρ) depends neither on space or time. Let us explain the meaning of (B.1). Note that Nf(t, x) − Nf(t + 1, x) records the number of particles in the fused SHS6V model that move across location x at time t, we subtract ρμ𝜖 here because we are in a reference frame that moves to right with speed ρμ𝜖.

  • The integrated covariance is defined as

    $$ \begin{array}{@{}rcl@{}} &A(\rho):= \lim\limits_{r \to \infty} \frac{1}{2 r} \bigg\langle N^{\mathsf{f}} (t, x+r) - N^{\mathsf{f}} (t, x - r) - \big\langle N^{\mathsf{f}} (t, x+r) - N^{\mathsf{f}} (t, x - r) \big\rangle_{\rho} \bigg\rangle_{\!\rho}. \end{array} $$

The KPZ scaling theory (equation (12) and (15) of [31]) predicts that

$$(i)\ \alpha_{2} = -\lim\limits_{\epsilon \downarrow 0} j^{\prime\prime}_{\epsilon} (\rho), \qquad (ii)\ \frac{\alpha_{3}}{\alpha_{1}} = \lim\limits_{\epsilon \downarrow 0} A_{\epsilon} (\rho), $$

A𝜖(ρ) and j𝜖(ρ) depend on 𝜖 under weakly asymmetry scaling (??).

Let us first verify (ii), note that under stationary distribution, N𝜖f(t, x + r) − N𝜖f(t, xr) is the sum of 2r i.i.d. random variables with the same distribution πρ, hence A𝜖(ρ) = Var[πρ]. By Lemma A.2, we know that

$$ \text{Var}\big[\pi_\rho \big] = \rho - \sum\limits_{i=1}^{I} \frac{\chi^{2}}{(q^{i} - \chi)^{2}}, $$

where χ is the unique negative solution of

$$ \sum\limits_{i=1}^{I} \frac{\chi}{\chi - q^{i}} = \rho. $$
(B.2)

Under weakly asymmetric scaling, one has \(q = e^{\sqrt {\epsilon }}\), which yields \(\lim _{\epsilon \downarrow 0} \chi _{\epsilon } = \frac {\rho }{\rho - I}\). Therefore,

$$ \lim\limits_{\epsilon \downarrow 0} A_{\epsilon} (\rho) = \lim\limits_{\epsilon \downarrow 0} \text{Var}\big[\pi_\rho \big] = \frac{\rho(I - \rho)}{I}. $$

This matches with the value of \(\frac {\alpha _{3}}{\alpha _{1}}\).

We proceed to verify (i). First, note that by Nf(t, x) = N(Jt, x),

$$ \begin{array}{@{}rcl@{}} N^{\mathsf{f}}(t, x) - N^{\mathsf{f}} (t+1, x) = N(Jt, x) - N((J+1)t, x) = \sum\limits_{s = Jt}^{(J+1)t - 1} K(s, x), \end{array} $$

where K(s, x) = N(s, x) − N(s + 1, x). We have shown in (A.6) that \(K(s, x) \sim \text {Ber }(\frac {\alpha (s) \chi }{1 + \alpha (s) \chi })\), where α(s) = αqmod (s). Therefore,

$$\mathbb{E}\big[N^{\mathsf{f}}(t, x) - N^{\mathsf{f}} (t+1, x)\big] = \mathbb{E}\bigg[\sum\limits_{s = Jt}^{(J+1)t - 1} K (s, x)\bigg] = \sum\limits_{k=0}^{J-1} \frac{\alpha q^{k} \chi}{1 + \alpha q^{k} \chi},$$

which yields

$$ j(\rho) = \epsilon^{-\frac{1}{2}} \bigg(\sum\limits_{k=0}^{J-1} \frac{\alpha q^{k} \chi}{1 + \alpha q^{k} \chi} - \rho \mu\bigg). $$

We proceed to taylor expand j𝜖(ρ) around 𝜖 = 0. Note that χ is implicitly defined through (B.2), we expand χ𝜖 around 𝜖 = 0

$$ \chi_{\epsilon} = \frac{\rho}{\rho - I} + \frac{(I+1)\rho}{2(\rho - I)} \sqrt{\epsilon} + \mathcal{O}(\epsilon). $$

Note that α depends on 𝜖 through \(\alpha _{\epsilon } = \frac {1 - b}{b - e^{\sqrt {\epsilon }}}\). Via straightforward calculation, one has

$$ \frac{\alpha q^{k} \chi}{1 + \alpha q^{k} \chi} = \frac{\alpha_\epsilon e^{k\sqrt{\epsilon}} \chi_{\epsilon}}{1 + \alpha_\epsilon e^{k \sqrt{\epsilon}} \chi_{\epsilon}} = \frac{\rho}{I} + \frac{(I\rho - \rho^{2})((2k + I + 1)b + 1 - I - 2k)}{2(b-1) I^{2}} \sqrt{\epsilon} + \mathcal{O}(\epsilon), $$

which implies

$$ \sum\limits_{k=0}^{J-1} \frac{\alpha q^{k} \chi}{1 + \alpha q^{k} \chi} = \frac{J\rho}{I} + \frac{J(I\rho - \rho^{2})\big((I + J) b - (I+J-2)\big)}{2(b-1) I^{2}} \sqrt{\epsilon} + \mathcal{O}(\epsilon). $$

Referring to the expression of μ in (??), one has the asymptotic expansion

$$ \begin{array}{@{}rcl@{}} \mu_{\epsilon} =\frac{J}{I} + \frac{J (I - 2\rho) (2 + (b-1)(I+J)) }{2(b -1) I^{2}} \sqrt{\epsilon} + \mathcal{O}(\epsilon). \end{array} $$

Consequently,

$$ \begin{array}{@{}rcl@{}} j_{\epsilon}(\rho) &= \epsilon^{-\frac{1}{2}} \bigg(\sum\limits_{k=0}^{J-1} \frac{\alpha q^{k} \chi}{1 + \alpha q^{k} \chi} - \rho \mu\bigg) = \frac{\rho^{2} J(b(I + J) - (I+J-2)}{2(b -1) I^{2}} + \mathcal{O}(\epsilon^{\frac{1}{2}}). \end{array} $$

We have

$$ \lim\limits_{\epsilon \downarrow 0} -j_{\epsilon}^{\prime\prime} (\rho) = \frac{J (b(I+J) - (I+J-2))}{(1-b) I^{2}}, $$

which coincides with the value of α2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y. KPZ Equation Limit of Stochastic Higher Spin Six Vertex Model. Math Phys Anal Geom 23, 1 (2020). https://doi.org/10.1007/s11040-019-9325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-019-9325-5

Keywords

Mathematics Subject Classification (2010)

Navigation