Skip to main content
Log in

Reflectionless Solutions for Square Matrix NLS with Vanishing Boundary Conditions

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this article we derive the reflectionless solutions of the 2 + 2 matrix NLS equation with vanishing boundary conditions and four different symmetries by using the matrix triplet method of representing the Marchenko integral kernel in separated form. Apart from using the Marchenko method, these solutions are also verified by direct substitution in the 2 + 2 NLS equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform – Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Aktosun, T., Busse, T.h., Demontis, F., van der Mee, C.: Symmetries for exact solutions to the nonlinear Schrödinger equation. J. Phys. A 43, 025202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Aktosun, T., Demontis, F., van der Mee, C.: Exact solutions to the focusing nonlinear Schrödinger equation. Inverse Problems 23, 2171–2195 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bart, H., Gohberg, I., Kaashoek, M.A.: Minimal factorization of matrix and operator functions, Birkhäuser OT 1, Basel (1979)

    Book  Google Scholar 

  6. Camassa, R., Falqui, G., Ortenzi, G., Pitton, G.: Singularity formation as a wetting formalism in a dispersionless water wave model. Nonlinearity 32, 4079–4116 (2019)

    Article  MathSciNet  Google Scholar 

  7. Camassa, R., Falqui, G., Ortenzi, G., Pedroni, M., Thomson, C.: Hydrodynamic models and confinement effects by horizontal boundaries. J. Nonlin. Sci. 29, 1445–1498 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Demontis, F.: Direct and inverse scattering of the matrix Zakharov-Shabat system, Ph.D. thesis, University of Cagliari, 2007; also: Lambert Acad. Publ., Saarbrücken (2012)

  9. Demontis, F., Lombardo, S., Sommacal, M., Vargiu, F.: Effective generation of closed-form soliton solutions of the continuous classical Heisenberg ferromagnet equation. Commun. Nonlinear Sci. Numer. Simul. 64, 35–65 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Demontis, F., Ortenzi, G., van der Mee, C.: Exact Solutions of the Hirota Equation and Vortex Filaments Motion. Physica D 313, 61–80 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions. J. Math. Phys. 55(101505), 40 (2014)

    MATH  Google Scholar 

  12. Demontis, F., van der Mee, C.: Marchenko equations and norming constants of the matrix Zakharov-Shabat system. Operators and Matrices 2, 79–113 (2008)

    Article  MathSciNet  Google Scholar 

  13. Demontis, F., van der Mee, C.: Explicit solutions of the cubic matrix nonlinear Schrödinger equation. Inverse Problems 24, 025020 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Eckert, K., Zawitkowski, Ł., Leskinen, M.J., Sanpera, A., Lewenstein, M.: Ultracold atomic Bose and Fermi spinor gases in optical lattices. New Journal of Physics 9(5), 133 (2007)

    Article  ADS  Google Scholar 

  15. Faddeev, L.D., Takhtajan, L.D.: Hamiltonian methods in the theory of Solitons. Springer, Berlin and Heidelberg (2007)

    MATH  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  17. Grabowski, M.: Second harmonic generation in periodically modulated media, Photonic Band Gaps and Localization, NATO ASI Series B, Vol. 308, 453–458, Springer US, Boston (1993)

  18. Grabowski, M.: Bichromatic wave propagation in periodically poled media. Phys. Rev. A 48, 2370–2373 (1993)

    Article  ADS  Google Scholar 

  19. Hirota, R.: The direct method in Soliton theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  20. Ho, T.-L., Yip, S.: Pairing of fermions with arbitrary spin. Phys. Rev. Lett. 82, 247–250 (1999)

    Article  ADS  Google Scholar 

  21. Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose-einstein condensates. Phys. Rev. Lett. 93, 194102 (2004)

    Article  ADS  Google Scholar 

  22. Ieda, J., Uchiyama, M., Wadati, M.: Dark soliton in F = 1 spinor Bose-Einstein condensates. J. Phys. Soc. Jpn 75, 064002 (2006)

    Article  ADS  Google Scholar 

  23. Lunquist, P.B., Andersen, D.R., Kivshar, Y.S.: Multicolor solitons due to four wave mixing. Phys. Rev. E 57, 3551–3555 (1998)

    Article  ADS  Google Scholar 

  24. Moro, A., Trillo, S.: Mechanism of wave breaking from a vacuum point in the defocusing nonlinear Schrödinger equation. Phys. Rev. E 89, 023202 (2014)

    Article  ADS  Google Scholar 

  25. Prinari, B., Demontis, F., Li, S., Horikis, T.: Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions. Physica D 368, 22–49 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Prinari, B., Ortiz, A., van der Mee, C., Grabowski, M.: Inverse scattering transform and solitons for square matrix nonlinear matrix nonlinear Schrödinger equations. Stud. Appl. Math. 141, 308–352 (2018)

    Article  MathSciNet  Google Scholar 

  27. Uchiyama, M., Ieda, J-i, Wadati, M.: Inverse scattering method for square matrix nonlinear Schroedinger equation under nonvanishing boundary conditions. J. Math. Phys. 48, 013507 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. van der Mee, C.: Nonlinear evolution models of integrable type, SIMAI e-Lecture Notes 11. Torino (2013)

  29. Wu, C.: Competing orders in one dimensional spin-3/2 fermionic systems. Phys. Rev. Lett. 95, 266404 (2005)

    Article  ADS  Google Scholar 

  30. Wu, C.: Hidden symmetry and quantum phases in spin-3/2 cold atomic systems. Modern Phys. Lett B 20, 1707–1738 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research leading to this article has been partially supported by the Regione Autonoma della Sardegna in the framework of the research programs Integro-Differential equations and non-local problems and Algorithms and Models for Imaging Science [AMIS], and by INdAM-GNFM (Istituto Nazionale di Alta Matematica, National Institute of Advanced Mathematics – Gruppo Nazionale per la Fisica Matematica, National Group for Mathematical Physics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Demontis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Integral Equations for Kernel Functions

In this appendix we list the integral equations for the auxiliary functions \(\overline {K}(x,y,t)\), K(x, y, t), L(x, y, t), and \(\overline {L}(x,y,t)\). Their proof can be found in the literature [2, 8, 28]. For the sake of brevity, we omit the time variable in all equations.

We have the following Volterra integral equations for the kernel functions:

$$ \begin{array}{@{}rcl@{}} \overline{K}^{\text{up}}(x,y)&=&-{\int}_{x}^{\infty} dz Q(z)\overline{K}^{{\text{dn}}}(z,z+y-x), \end{array} $$
(A.1a)
$$ \begin{array}{@{}rcl@{}} \overline{K}^{\text{dn}}(x,y)&=&-\tfrac{1}{2}R(\tfrac{1}{2}[x+y])-{\int}_{x}^{\tfrac{1}{2}[x+y]}dz R(z)\overline{K}^{\text{up}}(z,x+y-z), \end{array} $$
(A.1b)
$$ \begin{array}{@{}rcl@{}} K^{\text{up}}(x,y)&=&-\tfrac{1}{2}Q(\tfrac{1}{2}[x+y]) -{\int}_{x}^{\tfrac{1}{2}[x+y]}dz Q(z)K^{{\text{dn}}}(z,x+y-z), \end{array} $$
(A.1c)
$$ \begin{array}{@{}rcl@{}} K^{{\text{dn}}}(x,y)&=&-{\int}_{x}^{\infty} dz R(z)K^{\text{up}}(z,z+y-x), \end{array} $$
(A.1d)

as well as

$$ \begin{array}{@{}rcl@{}} L^{\text{up}}(x,y)&=&{\int}_{-\infty}^{x} dz Q(z)L^{{\text{dn}}}(z,z+y-x), \end{array} $$
(A.2a)
$$ \begin{array}{@{}rcl@{}} L^{{\text{dn}}}(x,y)&=&\tfrac{1}{2}R(\tfrac{1}{2}[x+y]) +{\int}_{x}^{\tfrac{1}{2}[x+y]}dz R(z)L^{\text{up}}(z,x+y-z), \end{array} $$
(A.2b)
$$ \begin{array}{@{}rcl@{}} \overline{L}^{\text{up}}(x,y)&=&\tfrac{1}{2}Q(\tfrac{1}{2}[x+y]) +{\int}_{x}^{\tfrac{1}{2}[x+y]}dz Q(z)\overline{L}^{{\text{dn}}}(z,x+y-z), \end{array} $$
(A.2c)
$$ \begin{array}{@{}rcl@{}} \overline{L}^{{\text{dn}}}(x,y)&=&{\int}_{-\infty}^{x} dz R(z)\overline{L}^{\text{up}}(z,z+y-x). \end{array} $$
(A.2d)

Equations (A.1a) and (A.2a) obviously imply (2.8a).

Suppose that F(y) is a matrix function of yxx0 or a matrix function of yxx0. Then we define

$$\mu(F,x)=\left\{\begin{array}{cc}{\int}_{x}^{\infty} dy \|F(y)\|,&x\ge x_{0},\\ {\int}_{-\infty}^{x} dy \|F(y)\|,&x\le x_{0}. \end{array}\right.$$

Then (A.1a) and (A.2a) imply

$$ \begin{array}{@{}rcl@{}} \mu(\overline{K}^{\text{up}},x)&\le&{\int}_{x}^{\infty} dz \|Q(z)\| \mu(\overline{K}^{{\text{dn}}},z), \end{array} $$
(A.3a)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{K}^{{\text{dn}}},x)&\le&{\int}_{x}^{\infty} dz \|R(z)\|+{\int}_{x}^{\infty} dz \|R(z)\|\mu(\overline{K}^{\text{up}},z), \end{array} $$
(A.3b)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{K}^{\text{up}},x)&\le&{\int}_{x}^{\infty} dz \|Q(z)\|+{\int}_{x}^{\infty} dz \|Q(z)\|\mu(K^{{\text{dn}}},z), \end{array} $$
(A.3c)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{K}^{{\text{dn}}},x)&\le&{\int}_{x}^{\infty} dz \|R(z)\|\mu(K^{\text{up}},z), \end{array} $$
(A.3d)

as well as

$$ \begin{array}{@{}rcl@{}} \mu(L^{\text{up}},x)&\le&{\int}_{-\infty}^{x} dz \|Q(z)\|\mu(L^{{\text{dn}}},x), \end{array} $$
(A.4a)
$$ \begin{array}{@{}rcl@{}} \mu(L^{{\text{dn}}},x)&\le&{\int}_{-\infty}^{x} dz \|R(z)\| +{\int}_{-\infty}^{x} dz \|R(z)\|\mu(L^{\text{up}},x), \end{array} $$
(A.4b)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{L}^{\text{up}},x)&\le&{\int}_{-\infty}^{x} dz \|Q(z)\| +{\int}_{-\infty}^{x} dz \|Q(z)\|\mu(\overline{L}^{{\text{dn}}},z), \end{array} $$
(A.4c)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{L}^{{\text{dn}}},x)&\le&{\int}_{-\infty}^{x} dz \|R(z)\| \mu(\overline{L}^{\text{up}},z). \end{array} $$
(A.4d)

The unique solvability of (A.1a) and (A.2a) now follows immediately by applying Gronwall’s inequality.

Using Gronwall’s inequality we get

$$ \begin{array}{@{}rcl@{}} \mu(\overline{K}^{\text{up}},x)+\mu(\overline{K}^{{\text{dn}}},x)&\le&\left( {\int}_{x}^{\infty} dz \|Q(z)\|\right)\exp\left( {\int}_{x}^{\infty} dz \|Q(z)\|\right), \end{array} $$
(A.5a)
$$ \begin{array}{@{}rcl@{}} \mu(K^{\text{up}},x)+\mu(K^{{\text{dn}}},x)&\le&\left( {\int}_{x}^{\infty} dz \|Q(z)\|\right) \exp\left( {\int}_{x}^{\infty} dz \|Q(z)\|\right), \end{array} $$
(A.5b)
$$ \begin{array}{@{}rcl@{}} \mu(L^{\text{up}},x)+\mu(L^{{\text{dn}}},x)&\le&\left( {\int}_{-\infty}^{x} dz \|Q(z)\|\right) \exp\left( {\int}_{-\infty}^{x} dz \|Q(z)\|\right), \end{array} $$
(A.5c)
$$ \begin{array}{@{}rcl@{}} \mu(\overline{L}^{\text{up}},x)+\mu(\overline{L}^{{\text{dn}}},x) &\le&\left( {\int}_{-\infty}^{x} dz \|Q(z)\|\right)\exp\left( {\int}_{-\infty}^{x} dz \|Q(z)\|\right), \end{array} $$
(A.5d)

where we have used that ∥Q(z)∥≡∥R(z)∥.

Equations (2.8a) and (2.8b) are to be interpreted as follows: The integral terms in (A.1a) and (A.2a) are continuous in \(y\in [x,+\infty )\) and in \(y\in (-\infty ,x]\), respectively. As a result,

$$ \begin{array}{@{}rcl@{}} \lim_{z\to x^{+}}\left\|2\overline{K}^{{\text{dn}}}(x,2z-x)+R(z)\right\|=0, \end{array} $$
(A.6a)
$$ \begin{array}{@{}rcl@{}} \lim_{z\to x^{+}}\left\|2K^{\text{up}}(x,2z-x)+Q(z)\right\|=0, \end{array} $$
(A.6b)
$$ \begin{array}{@{}rcl@{}} \lim_{z\to x^{-}}\left\|2L^{{\text{dn}}}(x,2z-x)-R(z)\right\|=0, \end{array} $$
(A.6c)
$$ \begin{array}{@{}rcl@{}} \lim_{z\to x^{-}}\left\|2\overline{L}^{\text{up}}(x,2z-x)-Q(z)\right\|=0, \end{array} $$
(A.6d)

where we have substituted \(z=\tfrac {1}{2}[x+y]\). If the entries of Q(x) and Qx both belong to \(L^{1}(\mathbb {R},dx)\), then (2.8a) and (2.8b) are valid pointwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demontis, F., van der Mee, C. Reflectionless Solutions for Square Matrix NLS with Vanishing Boundary Conditions. Math Phys Anal Geom 22, 26 (2019). https://doi.org/10.1007/s11040-019-9323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-019-9323-7

Keywords

Mathematics Subject Classification (2010)

Navigation