Skip to main content
Log in

Abelian Duality for Generalized Maxwell Theories

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We describe a construction of generalized Maxwell theories – higher analogues of abelian gauge theories – in the factorization algebra formalism of Costello and Gwilliam, allowing for analysis of the structure of local observables. We describe the phenomenon of abelian duality for local observables in these theories as a form of Fourier duality, relating observables in theories with dual abelian gauge groups and inverted coupling constants in a way compatible with the local structure. We give a description of expectation values in this theory and prove that duality preserves expectation values. Duality is shown to, for instance, interchange higher analogues of Wilson and ’t Hooft operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbón, J.: Generalized abelian S-duality and coset constructions. Nucl. Phys. B 452(1), 313–330 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Becker, C., Benini, M., Schenkel, A., Szabo, R.: Abelian duality on globally hyperbolic spacetimes. Commun. Math. Phys. 349(1), 361–392 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beilinson, A., algebras, V. Drinfeld.: Chiral volume 51 of colloquium publications. American Mathematical Society Providence, RI (2004)

    Google Scholar 

  4. Broda, B., Duniec, G.: Abelian duality in three dimensions. Phys. Rev. D 70(10), 107702 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beasley, C.: Abelian duality at higher genus. Journal of High Energy Physics, 7(157) (2014)

  6. Beasley, C.: Global aspects of abelian duality in dimension three. Journal of High Energy Physics, 8(146) (2014)

  7. Brylinski, J.: Loop spaces, characteristic classes and geometric quantization, volume 107 of progress in mathematics Birkhäuser (1993)

  8. Batalin, I., Vilkovisky, G.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  9. Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Vol. 1, volume 31 of new mathematical monographs. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  10. Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory. Vol. 2 (2018)

  11. Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. arXiv:1111.4234 (2011)

  12. Costello, K.: Renormalization and effective field theory, volume 170. AMS (2011)

  13. Freed, D., Moore, G., Segal, G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322(1), 236–285 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Freed, D., Moore, G., Segal, G.: The uncertainty of fluxes. Commun. Math. Phys. 271(1), 247–274 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Freed, D.: Dirac charge quantization and generalized differential cohomology. Surveys in Differential Geometry VII, 129–194 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Gwilliam, O., Johnson-Freyd, T.: How to derive Feynman diagrams for finite-dimensional integrals directly from the BV formalism. arXiv:1202.1554 (2012)

  17. Gwilliam, O.: Factorization algebras and free field theory. Northwestern University, PhD thesis (2012)

    Google Scholar 

  18. Kelnhofer, G.: Functional integration and gauge ambiguities in generalized abelian gauge theories. J. Geom. Functional Phys. 59, 1017–1035 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kapustin, A., Tikhonov, M.: Abelian duality, walls and boundary conditions in diverse dimensions. J. High Energy Phys. 2009(11), 006 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. arXiv:hep-th/0604151 (2006)

  21. Laumon, G.: Transformation de Fourier généralisée. arXiv:alg-geom/9603004 (1996)

  22. Lurie, J.: Higher algebra (2017)

  23. Prodanov, E.M., Sen, S.: Abelian duality. Phys. Rev. D 62(4), 045009 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rothstein, M.: Sheaves with connection on abelian varieties. Duke Mathematical Journal 84(3), 565–598 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toën, B., Vezzosi, G.: Homotopical algebraic geometry i: Topos theory. Adv. Math. 193(2), 257–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: Geometric stacks and applications, volume 193 of Memoirs of the American Mathematical Society American Mathematical Society (2008)

  28. Verlinde, E.: Global aspects of electric-magnetic duality. Nucl. Phys. B 455 (1), 211–225 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Witten, E.: A note on the antibracket formalism. Mod. Phys. Lett. A 5(07), 487–494 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Witten, E.: On S-duality in abelian gauge theory. Sel. Math. 2, 383–410 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Witten, E.: Quantum fields and strings: a course for mathematicians, volume 2, chapter: Dynamics of quantum field theory. AMS (1999)

Download references

Acknowledgments

I would like to thank Kevin Costello for many helpful ideas and discussions throughout this project, and Thel Seraphim for some of the initial ideas on how to view abelian duality for expectation values as a version of Plancherel’s theorem. I would also like to thank Saul Glasman, Sam Gunningham, Owen Gwilliam, Boris Hanin, Theo Johnson-Freyd, David Nadler, Toly Preygel, Nick Rozenblyum and Jesse Wolfson for helpful conversations, and the anonymous referees for many useful comments and corrections. Finally, I’d like to thank Theo Johnson-Freyd, Aron Heleodoro and Philsang Yoo for carefully reading an earlier draft and offering many helpful comments and corrections. Figures were created using the diagramming software Dia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Elliott.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, C. Abelian Duality for Generalized Maxwell Theories. Math Phys Anal Geom 22, 22 (2019). https://doi.org/10.1007/s11040-019-9319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-019-9319-3

Keywords

Mathematics Subject Classification (2010)

Navigation