Skip to main content

Advertisement

Log in

On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, zero duality gap conditions in nonconvex optimization are investigated. It is considered that dual problems can be constructed with respect to the weak conjugate functions, and/or directly by using an augmented Lagrangian formulation. Both of these approaches and the related strong duality theorems are studied and compared in this paper. By using the weak conjugate functions approach, special cases related to the optimization problems with equality and inequality constraints are studied and the zero duality gap conditions in terms of objective and constraint functions, are established. Illustrative examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aubin JP, Ekeland I (1984) Applied nonlinear analysis. Wiley, New York

    MATH  Google Scholar 

  • Azimov AY, Gasimov RN (1999) On weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization. Int J Appl Math 1:171–192

    MathSciNet  MATH  Google Scholar 

  • Azimov AY, Gasimov RN (2002) Stability and duality of nonconvex problems via augmented Lagrangian. Cybern Syst Anal 3:120–130

    MathSciNet  MATH  Google Scholar 

  • Bagirov AM, Ozturk G, Kasimbeyli R (2019) A sharp augmented Lagrangian-based method in constrained nonconvex optimization. Optim Methods Softw 34(3):462–488

    MathSciNet  MATH  Google Scholar 

  • Balder EJ (1977) An extension of duality–stability relations to nonconvex optimization problems. SIAM J Control Optim 15:329–343

    MathSciNet  MATH  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Burachik RS, Rubinov A (2007) Abstract convexity and augmented Lagrangians. SIAM J Optim 18:413–436

    MathSciNet  MATH  Google Scholar 

  • Burachik RS, Iusem AN, Melo JG (2010a) A primal dual modified subgradient algorithm with sharp Lagrangian. J Glob Optim 46:347–361

    MathSciNet  MATH  Google Scholar 

  • Burachik RS, Kaya CY, Mammadov M (2010b) An inexact modified algorithm for nonconvex optimization. Comput Optim Appl 45:1–24

    MathSciNet  MATH  Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  • Dolecki S, Kurcyusz S (1978) On \(\phi \)-convexity in extremal problems. SIAM J Control Optim 16:277–300

    MathSciNet  MATH  Google Scholar 

  • Dolgopolik MV (2015) A unifying theory of exactness of linear penalty functions. Optimization 65:1167–1202

    MathSciNet  MATH  Google Scholar 

  • Dolgopolik MV (2017) Existence of augmnented Lagrange multipliers: reduction to exact penalty functions and localization principle. Math Program Ser A 166:297–326

    MathSciNet  MATH  Google Scholar 

  • Ekeland I, Temam R (1976) Convex analysis and variational problems. Elsevier North-Holland, Amsterdam

    MATH  Google Scholar 

  • Ernst E, Volle M (2013) Zero duality gap for convex programs: a generalization of the Clark–Duffin theorem. J Optim Theory Appl 158:668–686

    MathSciNet  MATH  Google Scholar 

  • Ernst E, Volle M (2016) Zero duality gap and attainment with possibly non-convex data. J Convex Anal 23:615–629

    MathSciNet  MATH  Google Scholar 

  • Flores-Bazan F, Mastroeni G (2015) Characterizing FJ and KKT conditions in nonconvex mathematical programming with applications. SIAM J Optim 25:647–676

    MathSciNet  MATH  Google Scholar 

  • Flores-Bazan F, Echegaray W, Flores-Bazan F, Ocana E (2017) Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap. J Glob Optim 69:823–845

    MathSciNet  MATH  Google Scholar 

  • Gasimov RN (1992) Duality in nonconvex optimization. Ph.D. dissertation, Department of Operations Research and Mathematical Modeling, Baku State University, Baku

  • Gasimov RN (2002) Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming. J Glob Optim 24:187–203

    MathSciNet  MATH  Google Scholar 

  • Gasimov RN, Rubinov AM (2004) On augmented Lagrangians for optimization problems with a single constraint. J Glob Optim 28(2):153–173

    MathSciNet  MATH  Google Scholar 

  • Goberna MA, Lopez MA, Volle M (2014) Primal attainment in convex infinite optimization duality. J Convex Anal 21:1043–1064

    MathSciNet  MATH  Google Scholar 

  • Goh CJ, Yang XQ (2001) A nonlinear Lagrangian theory for nonconvex optimization. J Optim Theory Appl 109:99–121

    MathSciNet  MATH  Google Scholar 

  • Huang XX, Yang XQ (2003) A unified augmented Lagrangian approach to duality and exact penalization. Math Oper Res 28:520–533

    MathSciNet  MATH  Google Scholar 

  • Huang XX, Yang XQ (2005) Further study on augmented Lagrangian duality. J Glob Optim 31:193–210

    MathSciNet  MATH  Google Scholar 

  • Ioffe AD (1979) Necessary and sufficient conditions for a local minimum. III: second-order conditions and augmented duality. SIAM J Control Optim 17:266–288

    MathSciNet  MATH  Google Scholar 

  • Jeyakumar V, Huy NQ, Li G (2009) Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization. Optim Eng 10:491–503

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli N, Kasimbeyli R (2017) A representation theorem for Bishop–Phelps cones. Pac J Optim 13(1):55–74

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R (2009) Radial epiderivatives and set-valued optimization. Optimization 58(5):521–534

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R (2010) A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J Optim 20(3):1591–1619

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R, Karimi M (2019) Separation theorems for nonconvex sets and application in optimization. Oper Res Lett 47:569–573

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R, Mammadov M (2009) On weak subdifferentials, directional derivatives and radial epiderivatives for nonconvex functions. SIAM J Optim 20(2):841–855

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R, Mammadov M (2011) Optimality conditions in nonconvex optimization via weak subdifferentials. Nonlinear Anal 74:2534–2547

    MathSciNet  MATH  Google Scholar 

  • Kasimbeyli R, Ustun O, Rubinov AM (2009) The modified subgradient algorithm based on feasible values. Optimization 58(5):535–560

    MathSciNet  MATH  Google Scholar 

  • Li D (1995) Zero duality gap for a class of nonconvex optimization problems. J Optim Theory Appl 85:309–324

    MathSciNet  MATH  Google Scholar 

  • Pallaschke D, Rolewicz S (1997) Foundation of mathematical optimization. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Polik I, Terlaky T (2007) A survey of the S-lemma. SIAM Rev 49(3):371–418

    MathSciNet  MATH  Google Scholar 

  • Polyak BT (1998) Convexity of quadratic transformations and its use in control and optimization. SIAM Rev 99(3):553–583

    MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Rockafellar RT (1974) Conjugate duality and optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  • Rockafellar RT (1993) Lagrange multipliers and optimality. SIAM Rev 35:183–238

    MathSciNet  MATH  Google Scholar 

  • Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer, Berlin

    MATH  Google Scholar 

  • Rubinov AM (2000) Abstract convexity and global optimization. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Rubinov AM, Glover BM, Yang XQ (1999a) Decreasing functions with applications to penalization. SIAM J Optim 10:289–313

    MathSciNet  MATH  Google Scholar 

  • Rubinov AM, Glover BM, Yang XQ (1999b) Modified Lagrangian and penalty functions in continuous optimization. Optimization 46:327–351

    MathSciNet  MATH  Google Scholar 

  • Rubinov AM, Huang XX, Yang XQ (2002) The zero duality gap property and lower semicontinuity of the perturbation function. Math Oper Res 27(4):775–791

    MathSciNet  MATH  Google Scholar 

  • Rubinov AM, Yang XQ, Bagirov AM, Gasimov RN (2003) Lagrange-type functions, in constrained optimization. J Math Sci 115(4):2437–2505

    MathSciNet  MATH  Google Scholar 

  • Sharikov E (2009) On generalized conjugations and subdifferentials in abstract convex analysis. Optimization 58:599–610

    MathSciNet  MATH  Google Scholar 

  • Singer I (1997) Abstract convex analysis. Wiley, New York

    MATH  Google Scholar 

  • Wang C, Liu Q, Qu B (2017) Global saddle points of nonlinear augmented Lagrangian functions. J Glob Optim 68:125–146

    MathSciNet  MATH  Google Scholar 

  • Yang XQ, Huang XX (2001) A nonlinear Lagrangian approach to constrained optimization problems. SIAM J Optim 11(4):1119–1144

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the reviewers for all of their careful, constructive and insightful comments and suggestions, which have been very helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refail Kasimbeyli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcin, G.D., Kasimbeyli, R. On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization. Math Meth Oper Res 92, 199–228 (2020). https://doi.org/10.1007/s00186-020-00708-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-020-00708-8

Keywords

Mathematics Subject Classification

Navigation