Skip to main content

Advertisement

Log in

Hotspots of stream tadpole diversity in forest and agricultural landscapes in Ranomafana, Madagascar

  • Special Feature: Original Paper
  • Local Landscape Planning and Management in Rural Areas
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

Logging and human-induced conversion of natural forests into agricultural areas are major drivers of biodiversity loss in the tropics. Anuran larvae can be highly diverse, can reach high biomass and can play important roles in tropical streams; yet, compared to the adult frog communities, relatively little is known about how larval communities respond to disturbance. Information on larvae is highly relevant for amphibian conservation because larvae represent direct evidence of breeding and thus provide a good indicator of species persistence in disturbed habitats. We studied tadpole assemblages in Ranomafana, southeastern part of Madagascar, in streams in a disturbed forest (previously logged forest), at “forest edge” (streams embedded in matrix nearby forest blocks), and compared these to communities in a primary forest. We sampled tadpoles at the microhabitat level (“pools” and “riffles”) in 9 streams. We recorded 27 species with a maximum of 17 species/stream recorded at edge. The three habitats harbored different assemblages, but, as could be expected, more similarities existed among forest habitats than between forest and non-forest habitats. The most and the least diverse communities were recorded at edge and in the disturbed forest, respectively. Assemblages were dominated by one generalist species, and changes in communities were mostly driven by changes in forest specialists, which either decreased in disturbed forest or were replaced by edge specialists outside forest. Although species richness varied, relative abundances were maintained among habitats, suggesting potential compensatory mechanisms in tadpole biomass. Community structure changed at the microhabitat level: pool environments usually harbored relatively higher species richness and abundance than riffles. Our study highlights the relevance of edge habitats for maintaining amphibian diversity and the pronounced negative effects of past logging activities on tadpole communities. Given the diverse roles of tadpoles in streams, changes in community structure potentially affect critical stream ecosystem processes. The study has strong implications for designing buffer zones around protected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afonso LG, Eterovick PC (2007) Microhabitat choice and differential use by anurans in forest streams in southeastern Brazil. J Nat Hist 41:937–948

    Article  Google Scholar 

  • Alvarez D, Nicieza A (2002) Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct Ecol 16:640–648

    Article  Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Andreone F (1994) The amphibians of Ranomafana rain forest, Madagascar—preliminary community analysis and conservation considerations. Oryx 28:207–214

    Article  Google Scholar 

  • Bickford D, Ng TH, Qie L, Kudavidanage EP, Bradshaw CJA (2010) Forest fragment and breeding habitat characteristics explain frog diversity and abundance in Singapore. Biotropica 42:119–125

    Article  Google Scholar 

  • Borges Júnior V, Rocha CF (2013) Tropical tadpole assemblages: which factors affect their structure and distribution? Oecologia Australis 17:217–228

    Article  Google Scholar 

  • Bossuyt F, Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. PNAS 97:6585–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JH, Whitham TG, Ernest SM, Gehring CA (2001) Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643–650

    Article  CAS  PubMed  Google Scholar 

  • Burivalova Z, Şekercioğlu ÇH, Koh LP (2014) Thresholds of logging intensity to maintain tropical forest biodiversity. Curr Biol 24:1893–1898

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J of Ecol 18:117–143

    Article  Google Scholar 

  • Coad L, Watson JE, Geldmann J, Burgess ND, Leverington F, Hockings M, Knights K, Di Marco M (2019) Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17:259–264

    Article  Google Scholar 

  • Colón-Gaud C, Peterson S, Whiles MR, Kilham SS, Lips KR, Pringle CM (2008) Allochthonous litter inputs, organic matter standing stocks, and organic seston dynamics in upland Panamanian streams: potential effects of larval amphibians on organic matter dynamics. Hydrobiologia 603:301–312

    Article  Google Scholar 

  • Cortés-Gómez AM, Castro-Herrera F, Urbina-Cardona JN (2013) Small changes in vegetation structure create great changes in amphibian ensembles in the Colombian Pacific rainforest. Tropi Conserv Sci 6:749–769

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Dornelas M (2010) Disturbance and change in biodiversity. Philos Trans Royal Soc B 365:3719–3727

    Article  Google Scholar 

  • Edwards DP, Tobias JA, Sheil D, Meijaard E, Laurance WF (2014) Maintaining ecosystem function and services in logged tropical forests. Trends Ecol Evol 29:511–520

    Article  PubMed  Google Scholar 

  • Ernst R, Rodel M-O (2005) Anthropogenically induced changes of predictability in tropical anuran assemblages. Ecology 86:3111–3118

    Article  Google Scholar 

  • Ernst R, Rödel M-O (2008) Patterns of community composition in two tropical tree frog assemblages: separating spatial structure and environmental effects in disturbed and undisturbed forests. J Trop Ecol 24:111–120

    Article  Google Scholar 

  • Ernst R, Linsenmair KE, Rödel M-O (2006) Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol Conserv 133:143–155

    Article  Google Scholar 

  • Eterovick PC, Barata IM (2006) Distribution of tadpoles within and among Brazilian streams: the influence of predators, habitat size and heterogeneity. Herpetologica 62:365–377

    Article  Google Scholar 

  • Eterovick PC, Rievers CR, Kopp K, Wachlevski M, Franco BP, Dias CJ, Barata IM, Ferreira AD, Afonso LG (2010) Lack of phylogenetic signal in the variation in anuran microhabitat use in southeastern Brazil. Evol Ecol 24:1–24

    Article  Google Scholar 

  • Ferreira RB, Beard KH, Crump ML (2016) Breeding guild determines frog distributions in response to edge effects and habitat conversion in the Brazil’s atlantic forest. PLoS ONE 11:e0156781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner TA, Ribeiro-Junior MA, Barlow JOS, Ávila-Pires TCS, Hoogmoed MS, Peres CA (2007) The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conserv Biol 21:775–787

    Article  PubMed  Google Scholar 

  • Gascon C, Lovejoy TE, Bierregaard RO Jr, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S (1999) Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91:223–229

    Article  Google Scholar 

  • Gerber BD, Karpanty SM, Randrianantenaina J (2012) The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx 46:414–422

    Article  Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, Peres CA, Bradshaw CJ, Laurance WF, Lovejoy TE (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378

    Article  CAS  PubMed  Google Scholar 

  • Glaw F, Vences M (2007) A field guide to the amphibians and reptiles of Madagascar, 3rd edn. Frosch Verlag, Cologne

    Google Scholar 

  • Grosjean S, Randrianiaina R-D, Strauß A, Vences M (2011) Sand-eating tadpoles in Madagascar: morphology and ecology of the unique larvae of the treefrog Boophis picturatus. Salamandra 47:75–88

    Google Scholar 

  • Hammer Ř, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F (2007) Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv 34:325–333

    Article  Google Scholar 

  • Herrera JP, Wright PC, Lauterbur E, Ratovonjanahary L, Taylor LL (2011) The effects of habitat disturbance on lemurs at Ranomafana National Park, Madagascar. Int J Primatol 32:1091–1108

    Article  Google Scholar 

  • Inger RF, Voris HK, Frogner KJ (1986) Organization of a community of tadpoles in rain forest streams in Borneo. J Trop Ecol 2:193–205

    Article  Google Scholar 

  • Irwin MT, Wright PC, Birkinshaw C, Fisher BL, Gardner CJ, Glos J, Goodman SM, Loiselle P, Rabeson P, Raharison J-L, Raherilalao MJ, Rakotondravony D, Raselimanana A, Ratsimbazafy J, Sparks JS, Wilmé L, Ganzhorn JU (2010) Patterns of species change in anthropogenically disturbed forests of Madagascar. Biol Conserv 143:2351–2362

    Article  Google Scholar 

  • Keller A, Rödel M-O, Linsenmair KE, Grafe TU (2009) The importance of environmental heterogeneity for species diversity and assemblage structure in Bornean stream frogs. J Anim Ecol 78:305–314

    Article  PubMed  Google Scholar 

  • Kurz DJ, Nowakowski AJ, Tingley MW, Donnelly MA, Wilcove DS (2014) Forest-land use complementarity modifies community structure of a tropical herpetofauna. Biol Conserv 170:246–255

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89

    Article  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    Article  PubMed  Google Scholar 

  • Lehtinen RM, Ramanamanjato J-B, Raveloarison JG (2003) Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers Conserv 12:1357–1370

    Article  Google Scholar 

  • Lövei GL, Magura T, Tóthmérész B, Ködöböcz V (2006) The influence of matrix and edges on species richness patterns of ground beetles (Coleoptera: Carabidae) in habitat islands. Glo Ecol Biogeogr 15:283–289

    Article  Google Scholar 

  • Morgan Ernest S, Brown JH (2001) Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82:2118–2132

    Article  Google Scholar 

  • Ndriantsoa SH, Riemann JC, Raminosoa N, Rödel M-O, Glos JS (2017) Amphibian diversity in the matrix of a fragmented landscape around Ranomafana in Madagascar depends on matrix quality. Trop Conserv Sci 10:1–16

    Article  Google Scholar 

  • Nori J, Loyola R (2015) On the worrying fate of data deficient amphibians. PLoS ONE 10:e0125055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Package ‘vegan’. Community Ecology Package 2:1–295

    Google Scholar 

  • Parris KM (2004) Environmental and spatial variables influence the composition of frog assemblages in sub-tropical eastern Australia. Ecography 27:392–400

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramaharitra T (2006) The effects of anthropogenic disturbances on the structure and composition of rainforest vegetation. Tropical Resources Bulletin 25:32–37

    Google Scholar 

  • Ramamonjisoa N, Natuhara Y (2018) Contrasting effects of functionally distinct tadpole species on nutrient cycling and litter breakdown in a tropical rainforest stream. Freshwater Biol 63:202–213

    Article  CAS  Google Scholar 

  • Ramamonjisoa N, Rakotonoely H, Thomas H (2013) Spatial and temporal distribution of call activities of two Gephyromantis species (Mantellidae) along forest—farmbush habitat in Ranomafana, Madagascar. Afr J Herpetol 62:90–99

    Article  Google Scholar 

  • Ranvestel AW, Lips KR, Pringle CM, Whiles MR, Bixby RJ (2004) Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biol 49:274–285

    Article  Google Scholar 

  • Razafimahaimodison JCRA (2004) Impacts of habitat disturbance, including ecotourism activities, on breeding behavior and success of the pitta-like ground roller, Atelornis pittoides, an endangered bird species in the eastern rainforest of Ranomafana National Park, Madagascar

  • Riemann JC, Ndriantsoa SH, Raminosoa NR, Rödel M-O, Glos J (2015) The value of forest fragments for maintaining amphibian diversity in Madagascar. Biol Conserv 191:707–715

    Article  Google Scholar 

  • Rugenski AT, Murria C, Whiles MR (2012) Tadpoles enhance microbial activity and leaf decomposition in a neotropical headwater stream. Freshwater Biol 57:1904–1913

    Article  Google Scholar 

  • Schneider-Maunoury L, Lefebvre V, Ewers RM, Medina-Rangel GF, Peres CA, Somarriba E, Urbina-Cardona N, Pfeifer M (2016) Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. Biol Conserv 200:207–215

    Article  Google Scholar 

  • Skelly DK, Richardson JL (2010) Larval sampling. In: Dodd CK Jr (ed) Amphibian ecology and conservation. Oxford University Press, New York, pp 55–70

    Google Scholar 

  • Strauß A, Reeve E, Randrianiaina R, Vences M, Glos J (2010) The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauß A, Randrianiaina RD, Vences M, Glos J (2013) Species distribution and assembly patterns of frog larvae in rainforest streams of Madagascar. Hydrobiologia 702:27–43

    Article  Google Scholar 

  • Strauß A, Guilhaumon F, Randrianiaina RD, Valero KCW, Vences M, Glos J (2016) Opposing patterns of seasonal change in functional and phylogenetic diversity of tadpole assemblages. PLoS ONE 11:e0151744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Tecot S (2008) Seasonality and predictability: the hormonal and behavioral responses of the red-bellied lemur, Eulemur rubriventer, in Southeastern Madagascar. SUNY Stony Brook, New York, p 544

    Google Scholar 

  • Vieites DR, Wollenberg KC, Andreone F, Köhler J, Glaw F, Vences M (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. PNAS 106:8267–8272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vonesh JR, Mitchell JC, Howell K, Crawford AJ (2010) Rapid assessments of amphibian diversity. In: Dodd CK Jr (ed) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, pp 263–280

    Google Scholar 

  • Wells KD (2010) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Werner EE, Skelly DK, Relyea RA, Yurewicz KL (2007) Amphibian species richness across environmental gradients. Oikos 116:1697–1712

    Article  Google Scholar 

  • Wright PC, Andriamihaja B (2003) The conservation value of long-term research: a case study from the Parc National de Ranomafana. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI No. 26640137, the Graduate School of Environmental Studies of Nagoya University, and the Ministry of Education, Sports and Culture of the Government of Japan. The study was conducted under the research permit 256/15/MEEMF/SG/DGF/DAPT/SCBT. We are indebted to Justin Solo for assisting in the fieldwork. Yoda Ken and Kenichiro Sugitani provided valuable comments on earlier drafts of the manuscript. We thank Rio Heriniaina for making the map. We are grateful to the Ethology lab of Kyoto University for hosting N. Ramamonjsoa at the time of finalizing the manuscript. We thank Eileen Larney, MICET/ICTE, and Centre Valbio Ranomafana for logistic supports. We are grateful to Madagascar National Parks and the Ministry of Forest and Environment Madagascar for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noelikanto Ramamonjisoa or Yosihiro Natuhara.

Appendices

Appendix 1

Species of tadpole recorded in streams in primary forest, disturbed forest (selectively logged forest), and at forest edge in Ranomafana.

 

Mouthpart cluster

IUCN status

Boophis albilabris

Boophis–generalized

LC

Boophis andohahela

Suctorial

VU

Boophis elenae

Boophis–generalized

NT

Boophis luciae

Suctorial

LC

Boophis luteus

Boophis–generalized

LC

Boophis madagascariensis

Boophis–generalized

LC

Boophis marojezensis

Suctorial

LC

Boophis narinsi

Boophis–generalized

EN

Boophis periegetes

Boophis–generalized

NT

Boophis picturatus

Sand-eater

LC

Boophis quasiboehmei

Boophis–generalized

NA

Boophis reticulatus

Boophis–generalized

LC

Boophis sp. 37 (aff. elenae)

Boophis–generalized

DD

Boophis tasymena

Boophis–generalized

LC

Guibemantis liber

Gu.–podgy

LC

Gephyromantis ventrimatulatus

Ge.–non-feeding

LC

Mantidactylus aerumnalis

Funnel mouthed

LC

Mantidactylus betsileonis

Md. generalized

LC

Mantidactylus majori

Reduced teeth

LC

Mantidactylus melanopleura

Funnel mouthed

LC

Mantidactylus opiparus

Md.–funnel mouthed

NA

Mantidactylus sp. 47 (aff. mocquardi)

Md.–reduced teeth

NA

Mantidactylus sp. 28 (aff. betsileanus)

Md.–generalized

NA

Mantidactylus sp. 48 (aff. cowani small)

Md.—fossorial

NA

Spinomantis aglavei

Spinomantis–generalized

LC

Spinomantis peraccae

Spinomantis–generalized

LC

Spinomantis sp2 (fimbriatus)

Spinomantis–generalized

DD

  1. D data deficient, NT near threatened, LC least concern, VU vulnerable, EN endangered

Appendix 2

Pairwise differences following per MANOVA on species composition between the three habitats.

2014

 

Primary forest

Disturbed forest

Edge

Primary forest

 

0.0003

0.0003

Disturbed forest

0.0003

 

0.0003

Edge

0.0003

0.0003

 

2015

 

Primary forest

Disturbed forest

Edge

Edge

0.0003

0.0003

 

Disturbed forest

0.0003

 

0.0003

Primary forest

 

0.0003

0.0003

Appendix 3

SIMPER analyses on species compositional similarities between primary forest, disturbed forest, and edge.

2014

Primary versus disturbed forests

Primary forest versus edge

Disturbed forest versus edge

Overall average dissimilarity 35.43

Overall average dissimilarity 61.25

Overall average dissimilarity 54.19

Taxon

Av. dissim

Contrib. %

Cumulative %

Taxon

Av. dissim

Contrib. %

Cumulative %

Taxon

Av. dissim

Contrib. %

Cumulative %

M. sp47

3.885

10.97

10.97

B. picturatus

7.041

11.49

11.49

B.andohahela

7.095

13.09

13.09

B. reticulatus

3.704

10.45

21.42

B. andohahela

5.839

9.533

21.03

B.picturatus

6.178

11.4

24.49

M. sp28

3.627

10.24

31.66

B. elenae

4.777

7.798

28.82

B.elenae

5.35

9.872

34.37

Spinomantisaglavei

3.394

9.579

41.24

M. sp47

3.513

5.735

34.56

M.melanopleura

3.81

7.03

41.4

M. majori

3.211

9.063

50.3

B. reticulatus

3.487

5.693

40.25

M.sp28

3.693

6.814

48.21

S. peraccae

3.103

8.758

59.06

M. melanopleura

3.448

5.628

45.88

B.tasymena

3.604

6.651

54.86

G. liber

2.401

6.775

65.83

B. tasymena

3.244

5.297

51.18

B.madagascariensi

3.373

6.225

61.09

M. opiparus

2.322

6.553

72.38

B. madagascariensis

3.005

4.905

56.08

M.sp47

3.356

6.192

67.28

M. melanopleura

2.188

6.174

78.56

M. majori

2.988

4.879

60.96

B.reticulatus

2.9

5.351

72.63

B. madagascariensis

2.121

5.987

84.55

S. peraccae

2.822

4.606

65.57

B.sp37

2.517

4.645

77.27

B. picturatus

1.793

5.061

89.61

M. sp28

2.581

4.213

69.78

S.aglavei

2.396

4.422

81.7

M. sp48

1.017

2.87

92.48

G. liber

2.46

4.016

73.8

B.marojejiensis

1.993

3.677

85.37

M. aerumnalis

0.9716

2.742

95.22

S. aglavei

2.455

4.007

77.8

B.luteus

1.927

3.556

88.93

B. andohahela

0.7137

2.014

97.23

M. opiparus

2.269

3.704

81.51

B.periegetes

0.9834

1.815

90.74

S. sp2

0.4375

1.235

98.47

B. sp37

2.246

3.667

85.18

M.opiparus

0.7639

1.41

92.15

B. albilabris

0.2847

0.8035

99.27

B. marojejiensis

1.792

2.926

88.1

B.luciae

0.7536

1.391

93.55

G. ventrimaculatus

0.2585

0.7296

100

B. luteus

1.738

2.837

90.94

B.narinsi

0.6946

1.282

94.83

B. tasymena

0

0

100

M. sp48

0.9557

1.56

92.5

B.albilabris

0.6642

1.226

96.05

B. sp37

0

0

100

M. aerumnalis

0.8982

1.466

93.96

Guibemantisliber

0.6642

1.226

97.28

B. narinsi

0

0

100

B. periegetes

0.8855

1.446

95.41

M.majori

0.5797

1.07

98.35

B. marojejiensis

0

0

100

B. albilabris

0.8192

1.337

96.75

M.betsileonis

0.345

0.6366

98.98

B. quasiboehmei

0

0

100

B. luciae

0.6677

1.09

97.84

S.peraccae

0.2842

0.5244

99.51

M. betsileonis

0

0

100

B. narinsi

0.622

1.015

98.85

G.ventrimaculatus

0.2658

0.4906

100

B. periegetes

0

0

100

S. sp2

0.3935

0.6423

99.5

S.sp2

0

0

100

B. luciae

0

0

100

M. betsileonis

0.3092

0.5048

100

M.aerumnalis

0

0

100

B. luteus

0

0

100

G. ventrimaculatus

0

0

100

B.quasiboehmei

0

0

100

B. elenae

0

0

100

B. quasiboehmei

0

0

100

M.sp48

0

0

100

2015

Primary versus disturbed forests

Primary forest versus edge

Disturbed forest versus edge

Overall average dissimilarity 41.55

Overall average dissimilarity 66.88

Overall average dissimilarity 62.67

Taxon

Av. dissim

Contrib. %

Cumulative %

Taxon

Av. dissim

Contrib. %

Cumulative %

Taxon

Av. dissim

Contrib. %

Cumulative %

B. msis

6.568

15.81

15.81

B. andohahela

10.72

16.03

16.03

B. andohahela

13.22

21.1

21.1

M. sp47

4.673

11.25

27.05

B. elenae

9.232

13.8

29.84

B. elenae

11.34

18.09

39.19

B. reticulatus

4.64

11.17

38.22

B. picturatus

9.21

13.77

43.61

B. picturatus

9.602

15.32

54.51

G. liber

4.548

10.94

49.16

M. melanopleura

6.039

9.029

52.64

M. melanopleura

8.228

13.13

67.64

M. melanopleura

4.465

10.74

59.91

B. msis

5.893

8.811

61.45

B. reticulatus

5.731

9.145

76.79

S. aglavei

3.999

9.623

69.53

B. reticulatus

4.727

7.068

68.52

B. msis

5.362

8.556

85.34

S. peraccae

3.955

9.517

79.05

G. liberH

4.235

6.332

74.85

M. sp47

4.407

7.032

92.37

B. picturatus

2.9

6.979

86.03

M. sp47

3.964

5.926

80.78

B. quasiboehmei

1.715

2.737

95.11

M. majori

1.485

3.575

89.6

S. peraccae

3.691

5.519

86.3

M. sp48

1.641

2.618

97.73

M. sp48

1.362

3.278

92.88

S. aglavei

3.599

5.382

91.68

S. aglavei

0.5134

0.8192

98.55

B. quasiboehmei

1.161

2.795

95.67

M. sp48

1.85

2.766

94.44

M. opiparus

0.4553

0.7266

99.27

M. opiparus

1.028

2.473

98.15

M. majori

1.378

2.061

96.5

G. ventrimaculatus

0.4553

0.7266

100

G. ventrimaculatus

0.4085

0.983

99.13

B. quasiboehmei

1.363

2.038

98.54

M. sp28

0

0

100

M. sp28

0.3613

0.8696

100

M. opiparus

0.6333

0.947

99.49

S. peraccae

0

0

100

B. elenae

0

0

100

M. sp28

0.341

0.5098

100

G. liber

0

0

100

B. andohahela

0

0

100

G. ventrimaculatus

0

0

100

M. majori

0

0

100

Appendix 4

Sampling design

In each habitat, we sampled three streams. In each stream, we sampled tadpoles in 4 pools and in 4 riffles.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramamonjisoa, N., Sakai, M., Ndriantsoa, S.H. et al. Hotspots of stream tadpole diversity in forest and agricultural landscapes in Ranomafana, Madagascar. Landscape Ecol Eng 16, 207–221 (2020). https://doi.org/10.1007/s11355-020-00407-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-020-00407-w

Keywords

Navigation