Skip to main content
Log in

Study of the Magnetocaloric Effect by Means of Theoretical Models in La0.6Ca0.2Na0.2MnO3 Manganite Compound

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, an overview of the Weiss molecular mean-field theory, the Bean–Rodbell model and the Landau theory is presented, providing the theoretical background for simulating the magnetocaloric properties for La0.6Ca0.2Na0.2MnO3 manganite. Results showed that sample exhibits second-order ferromagnetic (FM)–paramagnetic (PM) magnetic phase transition and relatively higher values of magnetic entropy change (∆SM). In application point of view, this material can be used in magnetic refrigeration technology. The theoretical values of ∆SM determined using each theory agree well with the experimental ones estimated from Maxwell relations. In other part, a good agreement in the spontaneous magnetization values, Mspont(T), estimated from (∆SM vs. M2) and (H/M vs. M2) data was found. Also, the values of the critical exponent (β) found from both methods are close and check that the mean-field model is adequate to study the MCE in La0.6Ca0.2Na0.2MnO3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    ADS  Google Scholar 

  2. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, R.J. Kumar, G.R. Kumar, K.C.B. Naidu, J. Supercond. Nov. Magn. 31, 1971 (2018)

    Google Scholar 

  3. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Prog. Mater. Sci. 93, 112 (2018)

    Google Scholar 

  4. N.A. de Oliveira, P.J. von Ranke, Phys. Rep. 489, 89 (2010)

    ADS  Google Scholar 

  5. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Google Scholar 

  6. E. Brück, J. Phys. D Appl. Phys. 38, R381 (2005)

    ADS  Google Scholar 

  7. J. Lyubina, J. Phys. D Appl. Phys. 50, 053002 (2017)

    ADS  Google Scholar 

  8. K. Riahi, I. Messaoui, W.C. Koubaa, S. Mercone, B. Leridon, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 688, 1028 (2016)

    Google Scholar 

  9. H. Ben Khlifa, R. M’nassri, W.C. Koubaa, E.K. Hlil, A. Cheikhrouhou, Ceram. Int. 43, 8709 (2017)

    Google Scholar 

  10. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, J. Alloys Compd. 615, 553 (2014)

    Google Scholar 

  11. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 40, 16041 (2014)

    Google Scholar 

  12. S. Mahjoub, M. Baazaoui, E.K. Hlil, M. Oumezzine, Ceram. Int. 41, 12407 (2015)

    Google Scholar 

  13. I. Walha, M. Smari, T. Mnasri, E. Dhahri, J. Magn. Magn. Mater. 454, 190 (2018)

    Google Scholar 

  14. M.R. Laouyenne, M. Baazaoui, Kh Farah, E.K. Hlil, M. Oumezzine, J. Magn. Magn. Mater. 474, 393 (2019)

    ADS  Google Scholar 

  15. M. Zarifi, P. Kameli, T. Raoufi, A. Ghotbi Varzaneh, D. Salazar, M.I. Nouraddini, L. Kotsedi, M. Maazada, J. Magn. Magn. Mater. 494, 165734 (2020)

    Google Scholar 

  16. A.O. Ayaş, S.K. Çetin, M. Akyol, G. Akça, A. Ekicibil, J. Mol. Struct. 1200, 127120 (2020)

    Google Scholar 

  17. S.O. Manjunatha, A. Rao, V.P.S. Awana, G.S. Okram, J. Magn. Magn. Mater. 394, 130 (2015)

    ADS  Google Scholar 

  18. M. Khlifi, M. Bejar, O. EL Sadek, E. Dhahri, M.A. Ahmed, E.H. Hlil, J. Alloys Compd. 509, 7410 (2011)

    Google Scholar 

  19. P.T. Phong, S.J. Jang, B.T. Huy, Y.-I. Lee, I.-J. Lee, J. Mater Sci Mater Electron 24, 2292 (2013)

    Google Scholar 

  20. Y. Fu, Appl. Phys. Lett. 77, 118 (2000)

    ADS  Google Scholar 

  21. N. Mechi, S. Hcini, B. Alzahrani, M. Boudard, A. Dhahri, M.L. Bouazizi, J. Supercond. Nov. Magn. (2019). https://doi.org/10.1007/s10948-019-05353-9

    Article  Google Scholar 

  22. M. Hsini, S. Hcini, S. Zemni, J. Magn. Magn. Mater. 466, 368 (2018)

    ADS  Google Scholar 

  23. J.S. Amaral, V.S. Amaral, J. Magn. Magn. Mater. 322, 1552 (2010)

    ADS  Google Scholar 

  24. M. Hsini, M. Boutaleb, Eur. Phys. J. Plus 135, 186 (2020)

    Google Scholar 

  25. Q. Dong, H. Zhang, J. Sun, B. Shen, V. Franco, J. Appl. Phys. 103, 116101 (2008)

    ADS  Google Scholar 

  26. M. Hsini, S. Hcini, S. Zemni, J. Supercond. Nov. Magn. 31, 81 (2018)

    Google Scholar 

  27. V.S. Amaral, J.S. Amaral, J. Magn. Magn. Mater. 272–276, 2104 (2004)

    ADS  Google Scholar 

  28. A. Elghoul, A. Krichene, W. Boujelben, J. Phys. Chem. Solids 108, 52 (2017)

    ADS  Google Scholar 

  29. H. Yang, Q. Wu, N. Yu, Y. Yu, M. Pan, P. Zhang, H. Ge, J. Solid State Chem. 282, 121072 (2020)

    Google Scholar 

  30. E. Oumezzine, M. Oumezzine, E.K. Hlil, J. Alloys Compd. 682, 366 (2016)

    Google Scholar 

  31. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 41, 2042 (2015)

    Google Scholar 

  32. E. Oumezzine, S. Hcini, E.K. Hlil, E. Dhahri, M. Oumezzine, Phys. B 477, 105 (2015)

    ADS  Google Scholar 

  33. L. Jia, J. Sun, H. Zhang, F. Hu, C. Dong, B. Shen, J. Phys. Condens. Matter. 18, 9999 (2006)

    ADS  Google Scholar 

  34. S. Yahyaoui, M. Khalfaoui, S. Kallel, N. Kallel, J.S. Amaral, A. Ben Lamine, J. Alloys Compd. 685, 633 (2016)

    Google Scholar 

  35. S. Yahyaoui, M. Khalfaoui, S. Kallel, N. Kallel, J.S. Amaral, A. Ben, Lamine. J. Magn. Magn. Mater. 393, 105 (2015)

    ADS  Google Scholar 

  36. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  37. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (IOP Publishing, London, 2003)

    Google Scholar 

  38. R. Zach, M. Guillot, J. Tobola, J. Appl. Phys. 83, 7237 (1998)

    ADS  Google Scholar 

  39. M. Hsini, S. Hcini, S. Zemni, Eur. Phys. Eur. Phys. J. Plus 134, 588 (2019)

    ADS  Google Scholar 

  40. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonça, J.P. Araújo, M.A. Sá, P.B. Tavares, J.M. Vieira, J. Magn. Magn. Mater. 290, 686 (2005)

    ADS  Google Scholar 

  41. S. Khadhraoui, N. Zaidi, M. Hsini, Z.A. Alrowaili, J. Supercond. Nov. Magn. 32, 1285 (2019)

    Google Scholar 

  42. G.J. Liu, J.R. Sun, J. Lin, Y.W. Xie, T.Y. Zhao, H.W. Zhang, B.G. Shen, Appl. Phys. Lett. 88, 212505 (2006)

    ADS  Google Scholar 

  43. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project number 2017/01/7246.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bandar Alzahrani or Abdessalem Dhahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, B., Hsini, M., Hcini, S. et al. Study of the Magnetocaloric Effect by Means of Theoretical Models in La0.6Ca0.2Na0.2MnO3 Manganite Compound. J Low Temp Phys 200, 26–39 (2020). https://doi.org/10.1007/s10909-020-02455-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02455-w

Keywords

Navigation