Skip to main content

Advertisement

Log in

Improving Energy Detection Efficiency of Ti-Based Superconducting Transition-Edge Sensors with Optical Cavity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting transition-edge sensors (TESs) have demonstrated high detection efficiency and photon-number-resolving capability, making TESs attractive in quantum information and astrophysics. Aiming to achieve high energy detection efficiency (i.e., the ratio of the detected energy to incident energy), we integrate the TES in an optical cavity, consisting of 16-layer dielectric reflection mirror and 4-layer antireflection coating. The critical temperature was decreased to 260 mK after deposition of antireflection coating from its original 323 mK. The energy detection efficiency was increased by a factor of two, up to 40%, thanks to the enhancement of photon absorption by adding the optical cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.E. Lita, A.J. Miller, S.W. Nam, Opt. Express 16, 3032–3040 (2008). https://doi.org/10.1364/OE.16.003032

    Article  ADS  Google Scholar 

  2. D. Fukuda, G. Fujii, T. Nummata, K. Amemiya, A. Yoshizawa et al., Opt. Express 19, 870–875 (2011). https://doi.org/10.1364/OE.19.000870

    Article  ADS  Google Scholar 

  3. D. Rosenberg, A.E. Lita, A.J. Miller, S.W. Nam, Phys. Rev. A 71, 061803 (2005). https://doi.org/10.1103/PhysRevA.71.061803

    Article  ADS  Google Scholar 

  4. L. Lolli, E. Taralli, C. Portesi, E. Monticone, M. Rajteri, Appl. Phys. Lett. 103, 041107 (2013). https://doi.org/10.1063/1.4815922

    Article  ADS  Google Scholar 

  5. M. Giustina, M.A.M. Wersteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer et al., Phys. Rev. Lett. 115, 250401 (2015). https://doi.org/10.1103/PhysRevLett.115.250401

    Article  ADS  Google Scholar 

  6. R.W. Romani, A.J. Miller, B. Cabrera, S.W. Nam, J.M. Martinis, ApJ 563, 221–228 (2001). https://doi.org/10.1086/323874

    Article  ADS  Google Scholar 

  7. K. Niwa, T. Numata, K. Hattori, D. Fukuda, Sci. Rep. 7, 45660 (2017). https://doi.org/10.1038/srep45660

    Article  ADS  Google Scholar 

  8. D. Rosenberg, A.E. Lita, A.J. Miller, S.W. Nam, R.E. Schwall, IEEE Trans. Appl. Supercond. 15, 575–578 (2005). https://doi.org/10.1109/TASC.2005.849925

    Article  ADS  Google Scholar 

  9. C. Portesi, E. Tarralli, L. lolli, M. Rajteri, E. Monticone, IEEE Trans. Appl. Supercond. 25, 2101004 (2015). https://doi.org/10.1109/tasc.2014.2367455

    Article  Google Scholar 

  10. W. Zhang, Y. Geng, Z. Wang, J.Q. Zhong, P.Z. Li, W. Miao, Y. Ren, Q.J. Yao, J.F. Wang, S.C. Shi, IEEE Trans. Appl. Supercond. 29, 2100505 (2019). https://doi.org/10.1109/TASC.2019.2906276

    Article  Google Scholar 

  11. D. Fukuda, R.M.T. Damayanthi, A. Yoshizawa, N. Zen, H. Takahashi, K. Amemiya, M. Ohkubo, IEEE Trans.Appl. Supercond. 17, 259 (2007). https://doi.org/10.1109/TASC.2007.897393

    Article  ADS  Google Scholar 

  12. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R.M.T. Damayanthi, H. Takahashi, S. Inoue, M. Ohkubo, J. Low Temp. Phys. 151, 100 (2008). https://doi.org/10.1007/s10909-007-9634-0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. M.J. Wang with ASIAA for useful discussions. This work was supported in part by National Key R&D program of China under Grants 2017YFA0304003 and 2018YFA0404701, in part by NSFC under Grants 11673073 and U1831202, in part by CAS under Grants QYZDJ-SSW-SLH043 and GJJSTD20180003, and in part by the CAS Joint Key Lab for Radio Astronomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Zhang, W., Li, P.Z. et al. Improving Energy Detection Efficiency of Ti-Based Superconducting Transition-Edge Sensors with Optical Cavity. J Low Temp Phys 199, 556–562 (2020). https://doi.org/10.1007/s10909-020-02383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02383-9

Keywords

Navigation