Skip to main content

Advertisement

Log in

Development of an Optical Transition-Edge Sensor Array

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Transition-edge sensors (TESs) exhibiting high energy resolution for single optical photons have been applied to photon-counting microscopy for biological imaging. This paper discusses the development of TES arrays with large effective areas to expand the field of view of photon-counting microscopy and has fabricated an optical TES array comprising a Ti/Au bilayer on a Si substrate. Thermal interference due to Joule power did not affect the time constant and energy resolution of a detector in the TES array, even though the Joule power in the detector was changed by 23%. The photon signal crosstalk between adjacent detectors was − 40 dB which was negligible. Heat conduction through the Si substrate was dominant in the photon signal crosstalk between adjacent detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)

    Article  ADS  Google Scholar 

  2. K.D. Irwin, G.C. Hilton, Top. Appl. Phys. 99, 63 (2005)

    Google Scholar 

  3. J. Clarke, A.I. Braginski, The SQUID Handbook. Fundamentals and Technology of SQUIDs and SQUID Systems, vol. 1 (Wiley, London, 2004)

    Book  Google Scholar 

  4. W. Seidel, G. Forster, W. Christen, F. von Feilitzsch, H. Gobel, F. Probst, R. Mössbauer, Phys. Lett. B 236, 483 (1990)

    Article  ADS  Google Scholar 

  5. K.D. Irwin, S. Nam, B. Cabrera, B. Chugg, G. Park, R. Welty, J. Martinis, I.E.E.E. Trans, Appl. Supercond. 5, 2690 (1995)

    Article  ADS  Google Scholar 

  6. A. Miller, S. Nam, J. Martinis, A. Sergienko, Appl. Phys. Lett. 83, 791 (2003)

    Article  ADS  Google Scholar 

  7. B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, R. Romani, Appl. Phys. Lett. 73, 735 (1998)

    Article  ADS  Google Scholar 

  8. J.N. Ullom, A.A. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)

    Article  ADS  Google Scholar 

  9. K. Mitsuda, Phys. C 530, 93 (2016)

    Article  ADS  Google Scholar 

  10. L. Gottardi, H. Akamatsu, D. Barret, M. P. Bruijn, R. H. Hartog, J. W. Herder, H. F. C. Hoevers, M. Kiviranta, J. V. d. Kuur, A. J. V. d. Linden, B. D. Jackson, M. Jambunathan, M. L. Ridder, Astro-ph.IM arXiv:1604.00553v1 (2016)

  11. H. Muramatsu, T. Hayashi, K. Maehisa, Y. Nakashima, K. Mitsuda, N.Y. Yamasaki, T. Hara, K. Maehata, IEEE Trans. Appl. Supercond. 27, 2101204 (2017)

    Article  Google Scholar 

  12. Z.H. Levine, B.L. Glebov, A.L. Migdall, T. Gerrits, B. Calkins, A.E. Lita, S.W. Nam, J. Opt. Soc. Am. B 31, B20 (2014)

    Article  ADS  Google Scholar 

  13. L. Lolli, G. Brida, I.P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I.R. Berchera, E. TarallI, P. Traina, Int. J. Quant. Chem B 9, 405 (2011)

    Google Scholar 

  14. J. Burneya, T.J. Baya, P.L. Brinka, B. Cabreraa, J.P. Castlea, R.W. Romania, A. Tomadaa, S.W. Namb, A.J. Millerb, J. Martinisb, E. Wangc, T. Kennyc, B.A. Youngd, Nucl. Instrum. Methods Phys. Res. A 520, 533 (2004)

    Article  ADS  Google Scholar 

  15. T. Gerrits, A. Lita, B. Calkins, S.W. Nam, in Superconducting Devices in Quantum Optics (2016), pp. 31–60

  16. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, T. Zama, Opt. Express 19, 870 (2011)

    Article  ADS  Google Scholar 

  17. K. Niwa, T. Numata, K. Hattori, D. Fukuda, Sci. Rep. 7, 45660 (2017)

    Article  ADS  Google Scholar 

  18. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R.M.T. Damayanthi, H. Takahashi, S. Inoue, M. Ohkubo, J. Low Temp. Phys. 151, 100 (2008)

    Article  ADS  Google Scholar 

  19. A.J. Miller, A.E. Lita, B. Calkins, I. Vayshenker, S.M. Gruber, S.W. Nam, Opt. Express 19, 9102 (2011)

    Article  ADS  Google Scholar 

  20. R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, IEEE Trans. Appl. Supercond. 29, 2101105 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially endorsed by JST CREST JPMJCR17N4, AIST clean room for analog & digital superconductivity CRAVITY, AIST nano-processing facility NPF, NIMS nanofabrication platform NanoPla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Konno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konno, T., Takasu, S., Hattori, K. et al. Development of an Optical Transition-Edge Sensor Array. J Low Temp Phys 199, 27–33 (2020). https://doi.org/10.1007/s10909-020-02367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02367-9

Keywords

Navigation