1 Correction to: J Fourier Anal Appl (2019) 25:1134–1146 https://doi.org/10.1007/s00041-018-9612-8

The Paley–Littlewood square function \(g^{*}_{\lambda }\) is not bounded on \(L^{p}\) spaces if \(p\le 1\), as wrongly stated in the paper (see Theorem 2.5). A weaker estimate holds though, namely, \(g^{*}_{\lambda }\) is bounded from the \(H^{p}\) real Hardy space to the usual \(L^{p}\) space if \(p\le 1\). This is proved in references [17, 24]. Thus it is necessary to make two changes in the paper:

  1. (1)

    In Theorem 1.1, after formula (1.5) add the sentence: where the \(L^{p_{j}}\) norms at the right must be replaced by Hardy space norms \(H^{p_{j}}\) if \(p_{j}\le 1\).

  2. (2)

    In Theorem 2.5, at the end of statement (i), add the sentence: where the \(L^{p}\) norm at the right must be replaced by a Hardy space \(H^{p}\) norm if \(p\le 1\).

For completeness, here are the correct statements of Theorems 1.1 and 2.5.

Theorem 1.1

Let \(n\ge 1\). Assume \(s,s_{1},s_{2}\) and \(r,p_{1},p_{2}\) satisfy

$$\begin{aligned} s=s_{1}+s_{2}\in (0,2), \quad s_{j}\in (0,1), \qquad \frac{1}{r}=\frac{1}{p_{1}}+\frac{1}{p_{2}}, \quad \frac{2n}{n+2s_{j}}<p_{j}<\infty . \end{aligned}$$

Then for all \(u,v\in \mathscr {S}(\mathbb {R}^{n})\) we have

$$\begin{aligned} \Vert D ^{s}(uv)-uD ^{s}v-vD ^{s}u\Vert _{L^{r}} \lesssim \Vert D ^{s_{1}}u\Vert _{L^{p_{1}}} \Vert D ^{s_{2}}v\Vert _{L^{p_{2}}} \end{aligned}$$
(1.1)

where the \(L^{p_{j}}\) norms at the right must be replaced by Hardy space norms \(H^{p_{j}}\) if \(p_{j}\le 1\).

Moreover, if we define

$$\begin{aligned} \textstyle q_{j}=p_{j}\left( \frac{1}{2}+\frac{s_{j}}{n}\right) \quad \text {if } n\ge 2, \qquad q_{j}=\min \left\{ p_{j},p_{j}\left( \frac{1}{2}+s_{j}\right) \right\} \quad \text {if } n=1, \end{aligned}$$

and we assume in addition \(p_{1},p_{2}>1\) when \(n=1\), then for any weights \(w_{j}\in A_{q_{j}}\) we have

$$\begin{aligned} \Vert D ^{s}(uv)-uD ^{s}v-vD ^{s}u\Vert _{L^{r}(w_{1}^{r/p_{1}}w_{2}^{r/p_{2}}dx)} \lesssim \Vert D ^{s_{1}}u\Vert _{L^{p_{1}}(w_{1}dx)} \Vert D ^{s_{2}}v\Vert _{L^{p_{2}}(w_{2}dx)}. \end{aligned}$$
(1.2)

Theorem 2.5

Let \(n\ge 1\), \(\lambda >1\). For any \(u\in \mathscr {S}(\mathbb {R}^{n})\), \(g^{*}_{\lambda }(u)\) satisfies the following estimates, with constants independent of u:

  1. (i)

    \(\Vert g^{*}_{\lambda }(u)\Vert _{L^{p}}\lesssim \Vert u\Vert _{L^{p}}\) for \(\lambda >\max \{1,\frac{2}{p}\}\) and \(0<p<\infty \), where the \(L^{p}\) norm at the right must be replaced by a Hardy space \(H^{p}\) norm if \(p\le 1\).

  2. (ii)

    \(\Vert g^{*}_{\lambda }\Vert _{L^{p}(wdx)}\lesssim \Vert u\Vert _{L^{p}(wdx)}\) for \(\lambda >\max \{1,\frac{2}{p}\}\), \(1<p<\infty \) and \(w\in A_{\min \{p,\frac{p \lambda }{2}\}}\).