Skip to main content
Log in

Analysis of the non-linearity of the heat transfer equation in case of a time-dependent heat source: application to the \(3\omega \) method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The \(3\omega \) method may be used to estimate the thermal conductivity of an electrically conducting wire. In this method, an alternating voltage with an angular frequency \(\omega \) is applied to the wire. The resulting low electrical tension \(U_{3\omega }\) of angular frequency \(3\omega \) that appears in the total electrical tension is extracted by a lock-in amplifier. The amplitude of \(U_{3\omega }\) is directly linked to the thermal conductivity of the wire and enables its estimation. All authors using the \(3\omega \) method for the determination of the thermal conductivity of an electric conducting wire considered that the heat flux produced by Joule effect in the wire is constant. This hypothesis leads to a linear form of the heat transfer equation. In this work, an analytical model taking into account the dependence of the heat flux on the temperature is developed, it leads to a non-linear form of the heat transfer equation. The importance of the non-linearity in certain cases is demonstrated and the analytical solution is used to define a unique criterion that must be verified to ensure the validity of the linear solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Corbino OM (1910) Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Phys Z 11:413–417

    Google Scholar 

  2. Rosenthal LA (1961) Thermal response of bridewire used in electroexplosive devices. Rev Sci Instrum 32(9):1033–1036

    Article  Google Scholar 

  3. Holland LR (1963) Physical properties of Titanium. III. The specific heat. J Appl Phys 34(8):2350–2357

    Article  Google Scholar 

  4. Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 544(3):2674–2677

    Article  Google Scholar 

  5. Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470

    Article  Google Scholar 

  6. Birge NO, Dixon PK, Menon N (1997) Specific heat spectroscopy: origins status and applications of the \(3\omega \) method. Thermochim Acta 304(305):51–66

    Article  Google Scholar 

  7. Frank R, Drach V, Fricke J (1993) Determination of thermal conductivity and specific heat by a combined \(3\omega \)/decay technique. Rev Sci Instrum 64(3):760–765

    Article  Google Scholar 

  8. Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the \(3\omega \) method. Rev Sci Instrum 61(1):802–808

    Article  MathSciNet  Google Scholar 

  9. Cahill DG (1989) Thermal conductivity of thin films: measurements and understanding. Vacuum Sci Technol A 7(3):1259–1266

    Article  Google Scholar 

  10. Lee S-M, Cahill DG (1997) Heat transport in thin dielectric film. J Appl Phys 81(6):2590–2595

    Article  Google Scholar 

  11. Lu L, Yi W, Zhang DL (2001) \(3\upomega \) method for specific heat and thermal conductivity measurements. Rev Sci Instrum 72(7):2996–3003

    Article  Google Scholar 

  12. Dames C, Chen G (2005) \(1\upomega \), \(2\upomega \) and \(3\upomega \) methods for measurements of thermal properties. Rev Sci Instrum 76:124902

    Article  Google Scholar 

  13. Wang ZL, Tang DW, Zhang WG (2007) Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber. J Phys D: Appl Phys 40:4686–4690

    Article  Google Scholar 

  14. Bhatta RP, Annamalai S, Mohr RK, Brandys M, Pegg IL, Dutta B (2010) High temperature thermal conductivity of platinium microwire by \(3\upomega \) method. Rev Sci Instrum 81(11):114904

    Article  Google Scholar 

  15. Huzel D, Reith H, Schmitt MC, Picht O, Müller S, Toimil-Molares ME, Völklein F (2011) Characterization and application of thermoelectric nanowires, Chap. 14. In: Hashim A (ed) Nanowires - implementations and applications. IntechOpen

  16. Kimling J, Martens S, Nielsch K (2011) Thermal conductivity measurements using \(1\upomega \) and \(3\upomega \) methods revisited for voltage-driven setups. Rev Sci Instrum 82:074903

    Article  Google Scholar 

  17. Choi TY, Poulikakos D, Tharian J, Sennhauser U (2005) Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-\(\upomega \) method. Appl Phys Lett 87:013108

    Article  Google Scholar 

  18. Bourgeois O, Fournier T, Chaussy J (2007) Measurement of the thermal conductance of silicon nanowires at low temperatures. Appl Phys 101(1):016104

    Article  Google Scholar 

  19. Moon J, Weaver K, Feng B, Chae HG, Kumar SZ, Balk JB, Peterson GP (2012) Thermal conductivity measurement of individual poly (ether ketone)/carbon nanotube fibers using a steady-state DC thermal bridge method. Rev Sci Instrum 83:1–3

    Article  Google Scholar 

  20. Depasse F, Grossel Ph, Trannoy N (2004) Probe temperature and output voltage calculation for the SThM in AC mode. Superlattice Microstruct 35:315–322

    Article  Google Scholar 

  21. Xing C, Jensen C, Munro T, White B, Ban H, Chirtoc M (2014) Thermal property characterization of fine fibers by the \(3\upomega \) technique. Appl Therm Eng 71:589–595

    Article  Google Scholar 

  22. Hou J, Wang X, Vellelacheruvu P, Guo J, Liu C, Cheng HM (2006) Thermal characterization of single wall carbon nanotube bundle using the self-heating \(3\upomega \) technique. J Appl Phys 100:124314

    Article  Google Scholar 

  23. Duffy DG (2001) Green’s functions with applications. CRC Press, Boca Raton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jannot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Jannot, Y., Schick, V. et al. Analysis of the non-linearity of the heat transfer equation in case of a time-dependent heat source: application to the \(3\omega \) method. J Eng Math 121, 85–99 (2020). https://doi.org/10.1007/s10665-020-10040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-020-10040-z

Keywords

Navigation