Skip to main content
Log in

On the characteristics of shear acoustic waves propagating in an imperfectly bonded functionally graded piezoelectric layer over a piezoelectric cylinder

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A theoretical approach is taken into consideration to investigate the propagation behaviour of shear acoustic waves in a piezoelectric cylindrical layered structure composed of a piezoelectric material cylinder imperfectly bonded to a concentric functionally graded piezoelectric material (FGPM) cylindrical layer of finite width. The functional gradient in the FGPM cylindrical layer is considered to vary continuously along the radial direction (function of radial coordinate), and the imperfection of the interface of the cylindrical structure is taken into account which may practically exist due to some mechanical and/or electrical damage. By means of mathematical transformation, the governing electromechanical coupled field differential equations are reduced to Bessel’s equations. An analytical treatment has been employed to determine the dispersion relations of propagating shear acoustic waves for both electrically short and electrically open conditions, which are further validated by reducing the obtained results to the pre-established standard results and classical Love wave equation as a special case of the problem. The effects of functional gradient parameter, radii ratio, wave number, order of Bessel’s function appearing in the dispersion relations and mechanical/electrical imperfection parameters associated with the imperfect bonding of a piezoelectric material cylinder and FGPM layer on the phase velocity of shear acoustic waves have been reported through numerical simulation and graphical demonstration. For the sake of numerical computation, the data of PZT-5H for the FGPM cylindrical layer and AlN for a piezoelectric material cylinder have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Auld BA (1981) Wave propagation and resonance in piezoelectric materials. J Acoust Soc Am 70:1577–1585

    Google Scholar 

  2. Rao SS, Sunar M (1994) Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47:113

    Google Scholar 

  3. Uchino K (1998) Materials issues in design and performance of piezoelectric actuators: an overview. Acta Mater 46:3745–3753

    Google Scholar 

  4. Son MS, Kang YJ (2011) The effect of initial stress on the propagation behavior of SH waves in piezoelectric coupled plates. Ultrasonics 51:489–495

    Google Scholar 

  5. Zhang P, Liu J, Lin G (2016) Axisymmetric solutions for the multi-layered transversely isotropic piezoelectric medium. Appl Math Comput 290:355–375

    MathSciNet  MATH  Google Scholar 

  6. Chen P, Shen Y (2007) Propagation of axial shear magneto-electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int J Solids Struct 44:1511–1532

    MATH  Google Scholar 

  7. Chattopadhyay A, Singh AK (2012) Propagation of magnetoelastic shear waves in an irregular self-reinforced layer. J Eng Math 75:139–155

    MathSciNet  MATH  Google Scholar 

  8. El Baroudi A (2018) Influence of poroelasticity of the surface layer on the surface love wave propagation. J Appl Mech 85:051002

    Google Scholar 

  9. Love AEH (2013) A treatise on the mathematical theory of elasticity. Cambridge University Press, New York

    MATH  Google Scholar 

  10. Curtis RG, Redwood M (1973) Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J Appl Phys 44:2002–2007

    Google Scholar 

  11. Liu J xi, Fang DN, Wei WY, Zhao XF (2008) Love waves in layered piezoelectric/piezomagnetic structures. J Sound Vib 315:146–156

    Google Scholar 

  12. Goyal R, Kumar S (2019) Dispersion of Love waves in size-dependent substrate containing finite piezoelectric and viscoelastic layers. Int J Mech Mater Des 15(4):767–790

    Google Scholar 

  13. Singhal A, Sahu SA, Chaudhary S (2018) Approximation of surface wave frequency in piezo-composite structure. Compos Part B Eng 144:19–28

    Google Scholar 

  14. Liu J, Wang L, Lu Y, He S (2013) Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer. Smart Mater Struct 22:125034

    Google Scholar 

  15. Liu J (2014) A theoretical study on Love wave sensors in a structure with multiple viscoelastic layers on a piezoelectric substrate. Smart Mater Struct 23:075015

    Google Scholar 

  16. Wang Q, Jin J, Quek ST (2002) Propagation of a shear direction acoustic wave in piezoelectric coupled cylinders. J Appl Mech 69:391

    MATH  Google Scholar 

  17. Du J, Jin X, Wang J, Zhou Y (2007) SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mech 191:59–74

    MATH  Google Scholar 

  18. Paul HS, Nelson VK (1996) Axisymmetric vibration of piezocomposite hollow circular cylinder. Acta Mech 116:213–222

    MATH  Google Scholar 

  19. Khoshgoftar MJ, Ghorbanpour Arani A, Arefi M (2009) Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material. Smart Mater Struct 18:115007

    Google Scholar 

  20. Rahimi GH, Arefi M, Khoshgoftar MJ (2011) Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads. Appl Math Mech (English Ed) 32:997–1008

    MATH  Google Scholar 

  21. Xie H, Dai H-L, Guo Z-Y (2012) Dynamic response of a FGPM hollow cylinder under the coupling of multi-fields. Appl Math Comput 218:10492–10499

    MathSciNet  MATH  Google Scholar 

  22. Arefi M, Nahas I (2014) Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell. Compos Struct 118:510–518

    Google Scholar 

  23. Sedighi HM, Daneshmand F, Abadyan M (2015) Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators. Compos Struct 124:55–64

    Google Scholar 

  24. Liu H, Wang ZK, Wang TJ (2001) Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int J Solids Struct 38:37–51

    MATH  Google Scholar 

  25. Zhu H, Zhang L, Han J, Zhang Y (2014) Love wave in an isotropic homogeneous elastic half-space with a functionally graded cap layer. Appl Math Comput 231:93–99

    MathSciNet  MATH  Google Scholar 

  26. Hryniewicz Z (1985) Love-type waves in a randomly non-homogeneous layer over a homogeneous half-space. J Sound Vib 101:489–494

    Google Scholar 

  27. Shodja HM, Eskandari S, Eskandari M (2016) Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space. J Eng Math 97:83–100

    MathSciNet  MATH  Google Scholar 

  28. Sahu SA, Singhal A, Chaudhary S (2018) Surface wave propagation in functionally graded piezoelectric material: an analytical solution. J Intell Mater Syst Struct 29:423–437

    Google Scholar 

  29. Mahanty M, Chattopadhyay A, Kumar P, Singh AK (2018) Effect of initial stress, heterogeneity and anisotropy on the propagation of seismic surface waves. Mech Adv Mater Struct 1–12

  30. Kumar P, Chattopadhyay A, Mahanty M, Singh AK (2019) Analysis on propagation characteristics of the shear wave in a triple layered concentric infinite long cylindrical structure: an analytical approach. Eur Phys J Plus 134:35

    Google Scholar 

  31. Mahanty M, Chattopadhyay A, Dhua S, Chatterjee M (2017) Propagation of shear waves in homogeneous and inhomogeneous fibre-reinforced media on a cylindrical Earth model. Appl Math Model 52:493–511

    MathSciNet  MATH  Google Scholar 

  32. Singhal A, Sahu SA, Chaudhary S (2018) Liouville-Green approximation: an analytical approach to study the elastic waves vibrations in composite structure of piezo material. Compos Struct 184:714–727

    Google Scholar 

  33. Dasdemir A (2017) Effect of imperfect bonding on the dynamic response of a pre-stressed sandwich plate-strip with elastic layers and a piezoelectric core. Acta Mech Solida Sin 30:658–667

    Google Scholar 

  34. Li P, Jin F (2012) Bleustein-Gulyaev waves in a transversely isotropic piezoelectric layered structure with an imperfectly bonded interface. Smart Mater Struct 21(4):045009

    Google Scholar 

  35. Zhou YY, Lü CF, Chen WQ (2012) Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos Struct 94:2736–2745

    Google Scholar 

  36. Guo X, Wei P, Li L (2016) Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with mechanically and dielectrically imperfect interfaces. Mech Mater 93:168–183

    Google Scholar 

  37. Kumar P, Chattopadhyay A, Mahanty M, Singh AK (2019) Stresses induced by a moving load in a composite structure with an incompressible poroviscoelastic layer. J Eng Mech 145:04019062

    Google Scholar 

  38. Chen WQ, Cai JB, Ye GR, Wang YF (2004) Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. Int J Solids Struct 41:5247–5263

    MATH  Google Scholar 

  39. Wang X, Pan E, Roy AK (2007) Scattering of antiplane shear wave by a piezoelectric circular cylinder with an imperfect interface. Acta Mech 193:177–195

    MATH  Google Scholar 

  40. Chaudhary S, Sahu SA, Singhal A (2018) On secular equation of SH waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface. J Intell Mater Syst Struct 29:2223–2235

    Google Scholar 

  41. Li Y-D, Yong Lee K (2010) Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Ultrasonics 50:473–478

    Google Scholar 

  42. Kumar P, Mahanty M, Chattopadhyay A, Singh AK (2019) Effect of interfacial imperfection on shear wave propagation in a piezoelectric composite structure: Wentzel–Kramers–Brillouin asymptotic approach. J Intell Mater Syst Struct 30:2789–2807

    Google Scholar 

  43. Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  44. Tsubouchi K, Sugai K, Mikoshiba N (1981) AlN material constants evaluation and SAW Properties on AlN/Al\(_{2}\)O\(_{3}\) and AlN/Si. In: 1981 Ultrasonics symposium. IEEE, pp 375–380

Download references

Acknowledgements

Ms. Moumita Mahanty conveys her sincere thanks to DST Inspire, Govt. of India, for providing a Senior Research Fellowship under grant number DST/INSPIRE Fellowship/2016/IF160054 with application reference no. DST/INSPIRE/03/2015/000936. The authors sincerely acknowledge the assistance (in terms of equipment) provided by SERB-DST through project no. EMR/2016/003985/MS entitled “Mathematical Study on Wave Propagation Aspects in Piezoelectric Composite Structure with Complexities” for accomplishing the computational part of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulkit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} M_{11}= & {} N_{11} =\bar{{c}}_{44} \left( {\frac{\omega r_2 }{\beta _1 }{J}'_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) -\frac{\ell }{2}J_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) } \right) r_2^{-\left( {\frac{\ell }{2}+1} \right) } , \\ M_{12}= & {} N_{12} =\bar{{c}}_{44} \left( {\frac{\omega r_2 }{\beta _1 }{Y}'_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) -\frac{\ell }{2}Y_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) } \right) r_2^{-\left( {\frac{\ell }{2}+1} \right) } , \\ M_{13}= & {} N_{13} =-r_2^{-p-\frac{\ell }{2}-1} e_{15}^{\left( F \right) } \left( {\frac{\ell }{2}+p} \right) , \qquad M_{14} =N_{14} =r_2^{p-\frac{\ell }{2}-1} e_{15}^{\left( F \right) } \left( {p-\frac{\ell }{2}} \right) , \\ M_{15}= & {} N_{15} =0,\qquad M_{16} =N_{16} =0, \qquad N_{17} =0, \\ M_{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) r_2^{-\frac{\ell }{2}} , \qquad M_{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) r_2^{-\frac{\ell }{2}} ,\qquad M_{23} =r_2^{-p-\frac{\ell }{2}} , \\ M_{24}= & {} r_2^{p-\frac{\ell }{2}} , \qquad M_{25} =0, \qquad M_{26} =0, \\ N_{21}= & {} \frac{e_{15}^{\left( f \right) } }{\varepsilon _{11}^{\left( f \right) } }r_2^{-\frac{\ell }{2}} J_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad N_{22} =\frac{e_{15}^{\left( f \right) } }{\varepsilon _{11}^{\left( f \right) } }r_2^{-\frac{\ell }{2}} Y_p \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad N_{23} =r_2^{-\left( {\frac{\ell }{2}+p} \right) } , \qquad N_{24} =r_2^{-\left( {\frac{\ell }{2}-p} \right) } ,\\ N_{25}= & {} 0, \qquad N_{26} =0, \qquad N_{27} =-r_2^{-n} ,\\ N_{31}= & {} 0, \qquad N_{32} =0, \qquad N_{33} =r_2^{-\left( {\ell /{2+p+1}} \right) } \varepsilon _{11}^{\left( F \right) } \left( {\frac{\ell }{2}-p} \right) ,\\ N_{34}= & {} r_2^{-\left( {\ell /{2-p+1}} \right) } \varepsilon _{11}^{\left( F \right) } \left( {\frac{\ell }{2}+p} \right) , \qquad N_{35} =0, \qquad N_{36} =0,\qquad N_{37} =\varepsilon _{11}^{\left( 0 \right) } \nu r_2^{-n-1} ,\\ M_{31}= & {} N_{41} =\left[ {\alpha _1 r_1 J_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\left( {\frac{r_1 }{r_2 }} \right) ^{\ell }\bar{{c}}_{44} \left( {\frac{\omega r_1 }{\beta _1 }{J}'_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -J_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) \frac{\ell }{2}} \right) } \right] r_1^{-\frac{\ell }{2}-1} ,\\ M_{32}= & {} N_{42} =\left[ {\alpha _1 r_1 Y_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\left( {\frac{r_1 }{r_2 }} \right) ^{\ell }\bar{{c}}_{44} \left( {\frac{\omega r_1 }{\beta _1 }{Y}'_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -Y_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) \frac{\ell }{2}} \right) } \right] r_1^{-\frac{\ell }{2}-1} ,\\ M_{33}= & {} N_{43} =e_{15}^{\left( F \right) } r_1^{-p-\frac{\ell }{2}-1} \left( {\frac{\ell }{2}+p} \right) , \qquad M_{34} =N_{44} =e_{15}^{\left( F \right) } r_1^{p-\frac{\ell }{2}-1} \left( {p-\frac{\ell }{2}} \right) ,\\ M_{35}= & {} N_{45} =-\,\alpha _1 J_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) , \qquad M_{36} =N_{46} =0,\quad N_{37} =0,\\ M_{41}= & {} N_{51} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }r_1^{-\ell /2} J_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad M_{42} =N_{52} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }r_1^{-\ell /2} Y_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \\ M_{43}= & {} N_{53} =r_1^{-\left( {\ell /{2+p+1}} \right) } \left( {\alpha _2 r_1 -\varepsilon _{11}^{\left( F \right) } \left( {\frac{\ell }{2}+p} \right) } \right) ,\qquad M_{44} =N_{54} =r_1^{-\left( {\ell /{2-p+1}} \right) } \left( {\alpha _2 r_1 -\varepsilon _{11}^{\left( F \right) } \left( {\frac{\ell }{2}-p} \right) } \right) , \\ M_{45}= & {} N_{55} =-\,\alpha _2 \frac{e_{15}^{\left( P \right) } }{\varepsilon _{11}^{\left( P \right) } }J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad M_{46} =N_{56} =-\,\alpha _2 r_1^{-n} , \qquad N_{57} =0, \\ M_{51}= & {} N_{61} =0, \qquad M_{52} =N_{62} =0, \qquad M_{53} =N_{63} =r_1^{-\left( {\ell /{2+p+1}} \right) } \varepsilon _{11}^{\left( f \right) } \left( {\frac{\ell }{2}-p} \right) , \\ M_{54}= & {} N_{64} =r_1^{-\left( {\ell /{2-p+1}} \right) } \varepsilon _{11}^{\left( f \right) } \left( {\frac{\ell }{2}+p} \right) , \qquad M_{55} =N_{65} =0, \qquad M_{56} =N_{66} =-n\varepsilon _{11}^{\left( p \right) } r_1^{-n-1} ,\qquad N_{67} =0 \\ M_{61}= & {} N_{71} =\bar{{c}}_{44} \left( {\frac{\omega r_1 }{\beta _1 }{J}'_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\frac{\ell }{2}J_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right) r_1^{-\left( {\frac{\ell }{2}+1} \right) } , \\ M_{62}= & {} N_{72} =\bar{{c}}_{44} \left( {\frac{\omega r_1 }{\beta _1 }{Y}'_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\frac{\ell }{2}J_p \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right) r_1^{-\left( {\frac{\ell }{2}+1} \right) } , \\ M_{63}= & {} N_{73} =-e_{15}^{\left( F \right) } r_1^{-\left( {\ell /2+p+1} \right) } \left( {\frac{\ell }{2}+p} \right) , \qquad M_{64} =N_{74} =e_{15}^{\left( F \right) } r_1^{-\left( {\ell /2-p+1} \right) } \left( {p-\frac{\ell }{2}} \right) , \\ M_{65}= & {} N_{65} =-\bar{{\bar{{c}}}}_{44} \frac{\omega }{\beta _2 }{J}'_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) , \qquad M_{66} =N_{76} =ne_{15}^{\left( P \right) } r_1^{-\left( {n+1} \right) } ,\qquad c_{77} =0. \end{aligned}$$

Appendix B

$$\begin{aligned} {\overline{M}} _{11}= & {} {\overline{N}} _{11} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad {\overline{M}} _{12} ={\overline{N}} _{12} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\\ {\overline{M}} _{13}= & {} {\overline{N}} _{13} =-r_2^{-n-1} e_{15}^{\left( F \right) } n, \quad {\overline{M}} _{14} ={\overline{N}} _{14} =r_2^{n-1} e_{15}^{\left( F \right) } n, \quad {\overline{M}} _{15} ={\overline{N}} _{15} =0, \qquad {\overline{M}} _{16} ={\overline{N}} _{16} =0, \qquad {\overline{N}} _{17} =0,\\ {\overline{M}} _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad {\overline{M}} _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad {\overline{M}} _{23} =r_2^{-n} , \\ {\overline{M}} _{24}= & {} r_2^n , \qquad {\overline{M}} _{25} =0, \qquad {\overline{M}} _{26} =0, \\ {\overline{N}} _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad {\overline{N}} _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad {\overline{N}} _{23} =r_2^{-n} , \qquad {\overline{N}} _{24} =r_2^n , \\ {\overline{N}} _{25}= & {} 0, \qquad {\overline{N}} _{26} =0, \qquad {\overline{N}} _{27} =-r_2^{-n} , \\ {\overline{N}} _{31}= & {} 0, \qquad {\overline{N}} _{32} =0, \qquad {\overline{N}} _{33} =-nr_2^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \\ {\overline{N}} _{34}= & {} r_2^{n+1} \varepsilon _{11}^{\left( F \right) } n, \qquad {\overline{N}} _{35} =0, \qquad {\overline{N}} _{36} =0,\qquad {\overline{N}} _{37} =\varepsilon _{11}^{\left( 0 \right) } nr_2^{-n-1} , \\ {\overline{M}} _{31}= & {} {\overline{N}} _{41} =\left[ {\alpha _1 r_1 J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right] , \\ {\overline{M}} _{32}= & {} {\overline{N}} _{42} =\left[ {\alpha _1 r_1 Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right] , \\ {\overline{M}} _{33}= & {} {\overline{N}} _{43} =e_{15}^{\left( F \right) } r_1^{-n-1} n, \qquad {\overline{M}} _{34} ={\overline{N}} _{44} =-e_{15}^{\left( F \right) } r_1^{n-1} n, \\ {\overline{M}} _{35}= & {} {\overline{N}} _{45} =-\,\alpha _1 J_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) , \qquad {\overline{M}} _{36} ={\overline{N}} _{46} =0,\qquad {\overline{N}} _{37} =0, \\ {\overline{M}} _{41}= & {} {\overline{N}} _{51} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\qquad {\overline{M}} _{42} ={\overline{N}} _{52} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \\ {\overline{M}} _{43}= & {} {\overline{N}} _{53} =r_1^{-\left( {n+1} \right) } \left( {\alpha _2 r_1 -\varepsilon _{11}^{\left( F \right) } n} \right) ,\qquad {\overline{M}} _{44} ={\overline{N}} _{54} =r_1^{\left( {n+1} \right) } \left( {\alpha _2 r_1 +\varepsilon _{11}^{\left( F \right) } n} \right) , \\ {\overline{M}} _{45}= & {} {\overline{N}} _{55} =-\,\alpha _2 \frac{e_{15}^{\left( P \right) } }{\varepsilon _{11}^{\left( P \right) } }J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\qquad {\overline{M}} _{46} ={\overline{N}} _{56} =-\,\alpha _2 r_1^{-n} ,\qquad {\overline{N}} _{57} =0, \\ {\overline{M}} _{51}= & {} {\overline{N}} _{61} =0, \qquad {\overline{M}} _{52} ={\overline{N}} _{62} =0, \qquad {\overline{M}} _{53} ={\overline{N}} _{63} =-nr_1^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) },\quad \\ {\overline{M}} _{54}= & {} {\overline{N}} _{64} =nr_1^{\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \qquad {\overline{M}} _{55} =\overline{N} _{65} =0, \qquad {\overline{M}} _{56} ={\overline{N}} _{66} =-n\varepsilon _{11}^{\left( P \right) } r_1^{-n-1} ,\qquad {\overline{N}} _{67} =0, \\ {\overline{M}} _{61}= & {} {\overline{N}} _{71} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\qquad {\overline{M}} _{62} ={\overline{N}} _{72} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\\ {\overline{M}} _{63}= & {} {\overline{N}} _{73} =-e_{15}^{\left( F \right) } r_1^{-\left( {n+1} \right) } n,\qquad {\overline{M}} _{64} ={\overline{N}} _{74} =e_{15}^{\left( F \right) } r_1^{\left( {n-1} \right) } n, \\ {\overline{M}} _{65}= & {} {\overline{N}} _{65} =-\bar{{\bar{{c}}}}_{44} \frac{\omega }{\beta _2 }{J}'_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) , \qquad {\overline{M}} _{66} ={\overline{N}} _{76} =ne_{15}^{\left( P \right) } r_1^{-\left( {n+1} \right) } , \qquad {\overline{N}} _{77} =0. \\ \overline{{\overline{M}} } _{11}= & {} \overline{{\overline{N}} } _{11} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{{\overline{M}} } _{12} =\overline{{\overline{N}} } _{12} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\\ \overline{{\overline{M}} } _{13}= & {} \overline{{\overline{N}} } _{13} =-r_2^{-n-1} e_{15}^{\left( F \right) } n, \qquad \overline{{\overline{M}} } _{14} =\overline{{\overline{N}} } _{14} =r_2^{n-1} e_{15}^{\left( F \right) } n, \quad \overline{{\overline{M}} } _{15} =\overline{{\overline{N}} } _{15} =0, \quad \overline{{\overline{M}} } _{16} =\overline{{\overline{N}} } _{16} =0, \quad \overline{{\overline{N}} } _{17} =0,\\ \overline{{\overline{M}} } _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad \overline{{\overline{M}} } _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{{\overline{M}} } _{23} =r_2^{-n} , \\ \overline{{\overline{M}} } _{24}= & {} r_2^n , \qquad \overline{{\overline{M}} } _{25} =0,\qquad \overline{{\overline{M}} } _{26} =0, \\ \overline{{\overline{N}} } _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{{\overline{N}} } _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{{\overline{N}} } _{23} =r_2^{-n} , \overline{{\overline{N}} } _{24} =r_2^n , \\ \overline{{\overline{N}} } _{25}= & {} 0, \qquad \overline{{\overline{N}} } _{26} =0, \qquad \overline{{\overline{N}} } _{27} =-r_2^{-n} , \\ \overline{{\overline{N}} } _{31}= & {} 0, \qquad \overline{{\overline{N}} } _{32} =0, \qquad \overline{{\overline{N}} } _{33} =-nr_2^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \\ \overline{{\overline{N}} } _{34}= & {} r_2^{n+1} \varepsilon _{11}^{\left( F \right) } n, \qquad \overline{{\overline{N}} } _{35} =0,\qquad \overline{{\overline{N}} } _{36} =0,\qquad \overline{{\overline{N}} } _{37} =\varepsilon _{11}^{\left( 0 \right) } nr_2^{-n-1} , \\ \overline{{\overline{M}} } _{31}= & {} \overline{{\overline{N}} } _{41} =\left[ {\alpha _1 r_1 J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right] , \\ \overline{{\overline{M}} } _{32}= & {} \overline{{\overline{N}} } _{42} =\left[ {\alpha _1 r_1 Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) -\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) } \right] , \\ \overline{{\overline{M}} } _{33}= & {} \overline{{\overline{N}} } _{43} =e_{15}^{\left( F \right) } r_1^{-n-1} n, \qquad \overline{{\overline{M}} } _{34} =\overline{{\overline{N}} } _{44} =-e_{15}^{\left( F \right) } r_1^{n-1} n, \\ \overline{{\overline{M}} } _{35}= & {} \overline{{\overline{N}} } _{45} =-\,\alpha _1 J_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) ,\qquad \overline{{\overline{M}} } _{36} =\overline{{\overline{N}} } _{46} =0,\qquad \overline{{\overline{N}} } _{37} =0, \\ \overline{{\overline{M}} } _{41}= & {} \overline{{\overline{N}} } _{51} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad \overline{{\overline{M}} } _{42} =\overline{{\overline{N}} } _{52} =\alpha _2 \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \\ \overline{{\overline{M}} } _{43}= & {} \overline{{\overline{N}} } _{53} =r_1^{-\left( {n+1} \right) } \left( {\alpha _2 r_1 -\varepsilon _{11}^{\left( F \right) } n} \right) ,\qquad \overline{{\overline{M}} } _{44} =\overline{{\overline{N}} } _{54} =r_1^{\left( {n+1} \right) } \left( {\alpha _2 r_1 +\varepsilon _{11}^{\left( F \right) } n} \right) , \\ \overline{{\overline{M}} } _{45}= & {} \overline{{\overline{N}} } _{55} =0,\qquad \overline{{\overline{M}} } _{46} =\overline{{\overline{N}} } _{56} =-\,\alpha _2 r_1^{-n} ,\qquad \overline{{\overline{N}} } _{57} =0, \\ \overline{{\overline{M}} } _{51}= & {} \overline{{\overline{N}} } _{61} =0,\qquad \overline{{\overline{M}} } _{52} =\overline{{\overline{N}} } _{62} =0,\qquad \overline{{\overline{M}} } _{53} =\overline{{\overline{N}} } _{63} =-nr_1^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \\ \overline{{\overline{M}} } _{54}= & {} \overline{{\overline{N}} } _{64} =nr_1^{\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } ,\qquad \overline{{\overline{M}} } _{55} =\overline{{\overline{N}} } _{65} =0,\qquad \overline{{\overline{M}} } _{56} =\overline{{\overline{N}} } _{66} =-n\varepsilon _{11}^{\left( P \right) } r_1^{-n-1} ,\qquad \overline{{\overline{N}} } _{67} =0, \\ \overline{{\overline{M}} } _{61}= & {} \overline{{\overline{N}} } _{71} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad \overline{{\overline{M}} } _{62} =\overline{{\overline{N}} } _{72} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\\ \overline{{\overline{M}} } _{63}= & {} \overline{{\overline{N}} } _{73} =-e_{15}^{\left( F \right) } r_1^{-\left( {n+1} \right) } n, \qquad \overline{{\overline{M}} } _{64} =\overline{{\overline{N}} } _{74} =e_{15}^{\left( F \right) } r_1^{\left( {n-1} \right) } n, \\ \overline{{\overline{M}} } _{65}= & {} \overline{{\overline{N}} } _{65} =-c_{44}^{\left( P \right) } \frac{\omega }{\beta _2 }{J}'_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) ,\qquad \overline{{\overline{M}} } _{66} =\overline{{\overline{N}} } _{76} =0, \qquad \overline{{\overline{N}} } _{77} =0. \\ \overline{\overline{{\overline{M}} } } _{11}= & {} \overline{\overline{{\overline{N}} } } _{11} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{\overline{{\overline{M}} } } _{12} =\overline{\overline{{\overline{N}} } } _{12} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\\ \overline{\overline{{\overline{M}} } } _{13}= & {} \overline{\overline{{\overline{N}} } } _{13} =-r_2^{-n-1} e_{15}^{\left( F \right) } n,\quad \overline{\overline{{\overline{M}} } } _{14} =\overline{\overline{{\overline{N}} } } _{14} =r_2^{n-1} e_{15}^{\left( F \right) } n,\quad \overline{\overline{{\overline{M}} } } _{15} =\overline{\overline{{\overline{N}} } } _{15} =0, \quad \overline{\overline{{\overline{M}} } } _{16} =\overline{\overline{{\overline{N}} } } _{16} =0,\quad \overline{\overline{{\overline{N}} } } _{17} =0,\\ \overline{\overline{{\overline{M}} } } _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad \overline{\overline{{\overline{M}} } } _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) , \qquad \overline{\overline{{\overline{M}} } } _{23} =r_2^{-n} , \\ \overline{\overline{{\overline{M}} } } _{24}= & {} r_2^n ,\qquad \overline{\overline{{\overline{M}} } } _{25} =0, \qquad \overline{\overline{{\overline{M}} } } _{26} =0, \\ \overline{\overline{{\overline{N}} } } _{21}= & {} \frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{\overline{{\overline{N}} } } _{22} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_2 }{\beta _1 }} \right) ,\qquad \overline{\overline{{\overline{N}} } } _{23} =r_2^{-n} , \qquad \overline{\overline{{\overline{N}} } } _{24} =r_2^n , \\ \overline{\overline{{\overline{N}} } } _{25}= & {} 0, \qquad \overline{\overline{{\overline{N}} } } _{26} =0, \qquad \overline{\overline{{\overline{N}} } } _{27} =-r_2^{-n} , \\ \overline{\overline{{\overline{N}} } } _{31}= & {} 0, \qquad \overline{\overline{{\overline{N}} } } _{32} =0, \qquad \overline{\overline{{\overline{N}} } } _{33} =-nr_2^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \\ \overline{\overline{{\overline{N}} } } _{34}= & {} r_2^{n+1} \varepsilon _{11}^{\left( F \right) } n,\qquad \overline{\overline{{\overline{N}} } } _{35} =0, \qquad \overline{\overline{{\overline{N}} } } _{36} =0,\qquad \overline{\overline{{\overline{N}} } } _{37} =\varepsilon _{11}^{\left( 0 \right) } nr_2^{-n-1} , \\ \overline{\overline{{\overline{M}} } } _{31}= & {} \overline{\overline{{\overline{N}} } } _{41} =r_1 J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad \overline{\overline{{\overline{M}} } } _{32} =\overline{\overline{{\overline{N}} } } _{42} =r_1 Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \\ \overline{\overline{{\overline{M}} } } _{33}= & {} \overline{\overline{{\overline{N}} } } _{43} =0, \qquad \overline{\overline{{\overline{M}} } } _{34} =\overline{\overline{{\overline{N}} } } _{44} =0, \qquad \overline{\overline{{\overline{M}} } } _{35} =\overline{\overline{{\overline{N}} } } _{45} =-J_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) ,\qquad \overline{\overline{{\overline{M}} } } _{36} =\overline{\overline{{\overline{N}} } } _{46} =0, \quad \overline{\overline{{\overline{N}} } } _{37} =0, \\ \overline{\overline{{\overline{M}} } } _{41}= & {} \overline{\overline{{\overline{N}} } } _{51} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }J_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad \overline{\overline{{\overline{M}} } } _{42} =\overline{\overline{{\overline{N}} } } _{52} =\frac{e_{15}^{\left( F \right) } }{\varepsilon _{11}^{\left( F \right) } }Y_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \\ \overline{\overline{{\overline{M}} } } _{43}= & {} \overline{\overline{{\overline{N}} } } _{53} =r_1^{-n} ,\qquad \overline{\overline{{\overline{M}} } } _{44} =\overline{\overline{{\overline{N}} } } _{54} =r_1^{\left( {n+2} \right) } ,\qquad \overline{\overline{{\overline{M}} } } _{45} =\overline{\overline{{\overline{N}} } } _{55} =0, \qquad \overline{\overline{{\overline{M}} } } _{46} =\overline{\overline{{\overline{N}} } } _{56} =-r_1^{-n} ,\qquad \overline{\overline{{\overline{N}} } } _{57} =0, \\ \overline{\overline{{\overline{M}} } } _{51}= & {} \overline{\overline{{\overline{N}} } } _{61} =0, \qquad \overline{\overline{{\overline{M}} } } _{52} =\overline{\overline{{\overline{N}} } } _{62} =0, \qquad \overline{\overline{{\overline{M}} } } _{53} =\overline{\overline{{\overline{N}} } } _{63} =-nr_1^{-\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \\ \overline{\overline{{\overline{M}} } } _{54}= & {} \overline{\overline{{\overline{N}} } } _{64} =nr_1^{\left( {n+1} \right) } \varepsilon _{11}^{\left( F \right) } , \qquad \overline{\overline{{\overline{M}} } } _{55} =\overline{\overline{{\overline{N}} } } _{65} =0, \qquad \overline{\overline{{\overline{M}} } } _{56} =\overline{\overline{{\overline{N}} } } _{66} =0,\qquad \overline{\overline{{\overline{N}} } } _{67} =0, \\ \overline{\overline{{\overline{M}} } } _{61}= & {} \overline{\overline{{\overline{N}} } } _{71} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{J}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) , \qquad \overline{\overline{{\overline{M}} } } _{62} =\overline{\overline{{\overline{N}} } } _{72} =\bar{{c}}_{44} \frac{\omega }{\beta _1 }{Y}'_n \left( {\frac{\omega r_1 }{\beta _1 }} \right) ,\\ \overline{\overline{{\overline{M}} } } _{63}= & {} \overline{\overline{{\overline{N}} } } _{73} =-e_{15}^{\left( F \right) } r_1^{-\left( {n+1} \right) } n, \qquad \overline{\overline{{\overline{M}} } } _{64} =\overline{\overline{{\overline{N}} } } _{74} =e_{15}^{\left( F \right) } r_1^{\left( {n-1} \right) } n, \\ \overline{\overline{{\overline{M}} } } _{65}= & {} \overline{\overline{{\overline{N}} } } _{65} =-\mu _2 \frac{\omega }{\beta _2 }{J}'_n \left( {\frac{\omega r_1 }{\beta _2 }} \right) ,\qquad \overline{\overline{{\overline{M}} } } _{66} =\overline{\overline{{\overline{N}} } } _{76} =0, \qquad \overline{\overline{{\overline{N}} } } _{77} =0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanty, M., Kumar, P., Singh, A.K. et al. On the characteristics of shear acoustic waves propagating in an imperfectly bonded functionally graded piezoelectric layer over a piezoelectric cylinder. J Eng Math 120, 67–88 (2020). https://doi.org/10.1007/s10665-019-10032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10032-8

Keywords

Navigation