Skip to main content

Advertisement

Log in

Performance evaluation of developed dedicated breast PET scanner and improvement of the spatial resolution by wobbling: a Monte Carlo study

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Molecular imaging, particularly PET scanning, has become an important cancer diagnostic tool. Whole-body PET is not effective for local staging of cancer because of their declining efficiency in detecting small lesions. The preliminary results of the performance evaluation of designed dedicated breast PET scanner presented.

Methods and materials

A new scanner is based on LYSO crystals coupled with SiPM, and it consists of 14 compact modules with a transaxial FOV of 180 mm in diameter. In this study, initial GATE simulation studies were performed to predict the spatial resolution, absolute sensitivity, noise equivalent count rate (NECR) and scatter fraction (SF) of the new design. Spatial wobbling acquisitions were also implemented. Finally, the obtained projections were reconstructed using analytical and iterative algorithms.

Results

The simulation results indicate that absolute sensitivity is 1.42% which is appropriate than other commercial breast PET systems. The calculated SF and NECR in our design are 20.6% and 21.8 kcps. The initial simulation results demonstrate the potential of this design for breast cancer detection. A small wobble motion to improve spatial resolution and contrast.

Conclusion

The performance of the dedicated breast PET scanner is considered to be reasonable enough to support its use in breast cancer imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rajaraman P, Anderson BO, Basu P, Belinson JL, D'Cruz A, Dhillon PK, et al. Recommendations for screening and early detection of common cancers in India. Lancet Oncol. 2015;16(7):e352–e361361.

    Article  Google Scholar 

  2. Stewart B, Wild CP. World cancer report 2014. Health. 2017.

  3. Berg WA, Bandos AI, Mendelson EB, Lehrer D, Jong RA, Pisano ED. Ultrasound as the primary screening test for breast cancer: analysis from ACRIN 6666. JNCI J Natl Cancer Inst. 2016;108(4):djv367.

    Article  Google Scholar 

  4. Lehman CD, Lee JM, DeMartini WB, Hippe DS, Rendi MH, Kalish G, et al. Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst. 2016;108(3):djv349.

    Article  Google Scholar 

  5. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology. 2008;246(1):116–24.

    Article  Google Scholar 

  6. Haas BM, Kalra V, Geisel J, Raghu M, Durand M, Philpotts LE. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology. 2013;269(3):694–700.

    Article  Google Scholar 

  7. Granov A, Tiutin L, Schwarz T. Positron emission tomography. Berlin: Springer Science & Business Media; 2013.

    Book  Google Scholar 

  8. Madsen M. Quantitative analysis in nuclear medicine imaging. Med Phys. 2007;34(4):1522.

    Article  Google Scholar 

  9. Fowler AM. A molecular approach to breast imaging. J Nucl Med. 2014;55(2):177–80.

    Article  Google Scholar 

  10. Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266(2):388–405.

    Article  Google Scholar 

  11. Thompson C, Murthy K, Weinberg I, Mako F. Feasibility study for positron emission mammography. Med Phys. 1994;21(4):529–38.

    Article  CAS  Google Scholar 

  12. Belcari N, Guerra A. High-resolution and animal imaging instrumentation and techniques. Handbook of particle detection and imaging. Berlin: Springer; 2012. p. 1125–1151.

    Google Scholar 

  13. MacDonald L, Edwards J, Lewellen T, Haseley D, Rogers J, Kinahan P. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50(10):1666–755.

    Article  Google Scholar 

  14. Raylman RR, Majewski S, Smith MF, Proffitt J, Hammond W, Srinivasan A, et al. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol. 2008;53(3):637.

    Article  Google Scholar 

  15. Bowen SL, Wu Y, Chaudhari AJ, Fu L, Packard NJ, Burkett GW, et al. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med Off Publ Soc Nucl Med. 2009;50(9):1401.

    Google Scholar 

  16. Godinez F, Chaudhari AJ, Yang Y, Farrell R, Badawi RD. Characterization of a high-resolution hybrid DOI detector for a dedicated breast PET/CT scanner. Phys Med Biol. 2012;57(11):3435.

    Article  Google Scholar 

  17. Moliner L, Gonzalez A, Soriano A, Sánchez F, Correcher C, Orero A, et al. Design and evaluation of the MAMMI dedicated breast PET. Med Phys. 2012;39(9):5393–404.

    Article  CAS  Google Scholar 

  18. Miyake KK, Matsumoto K, Inoue M, Nakamoto Y, Kanao S, Oishi T, et al. Performance evaluation of a new dedicated breast PET scanner using NEMA NU4-2008 standards. J Nucl Med. 2014;55(7):1198–203.

    Article  CAS  Google Scholar 

  19. Brooks RA, Sank VJ, Di GC, Friauf WS, Leighton SB. Design of a high resolution positron emission tomograph: the Neuro-PET. J Comput Assist Tomogr. 1980;4(1):5–13.

    Article  CAS  Google Scholar 

  20. Bohm C, Eriksson L, Bergstrom M, Litton J, Sundman R, Singh M. A computer assisted ringdector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci. 1978;25(1):624–37.

    Article  Google Scholar 

  21. Cho Z-H, Son Y-D, Kim H-K, Kwon D-H, Joo Y-H, Ra JB, et al. Development of positron emission tomography with wobbling and zooming for high sensitivity and high-resolution molecular imaging. IEEE Trans Med Imaging. 2019;38(12):2875–82.

    Article  Google Scholar 

  22. Salar S, Navid Z, Mohsen T, Sanaz K, Hadi K, Saeed S, et al. Generic high resolution PET detector block using 12 × 12 SiPM array. Biomed Phys Eng Express. 2018;4(3):035014.

    Article  Google Scholar 

  23. Association N. NEMA Standards Publication NU 4-2008. Performance measurements of small animal positron emission tomographs. 2008.

  24. Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR. PET and [18 F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996;23(6):717–35.

    Article  CAS  Google Scholar 

  25. Geramifar P, Ay M, Zafarghandi MS, Sarkar S, Loudos G, Rahmim A. Investigation of time-of-flight benefits in an LYSO-based PET/CT scanner: a Monte Carlo study using GATE. Nucl Instrum Methods Phys Res Sect A. 2011;641(1):121–7.

    Article  CAS  Google Scholar 

  26. Moliner L, Gonzalez A, Soriano A, Sanchez F, Correcher C, Orero A, et al. Design and evaluation of the MAMMI dedicated breast PET. Med Phys. 2012;39(9):5393–404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Ghadiri, Pardis Ghafarian, Parham Geramifar or Mohammad Reza Ay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, A., Ghadiri, H., Ghafarian, P. et al. Performance evaluation of developed dedicated breast PET scanner and improvement of the spatial resolution by wobbling: a Monte Carlo study. Jpn J Radiol 38, 790–799 (2020). https://doi.org/10.1007/s11604-020-00966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-00966-w

Keywords

Navigation