Skip to main content
Log in

Quantum Speed Limits For Adiabatic Evolution, Loschmidt Echo and Beyond

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

One often needs to estimate how fast an evolving state of a quantum system can depart from some target state or target subspace of a Hilbert space. Such estimates are known as quantum speed limits. We derive a quantum speed limit for a general time-dependent target subspace. When the target subspace is an instantaneous invariant subspace of a time-dependent Hamiltonian, the obtained quantum speed limit bounds the adiabatic fidelity, which is a figure of merit of quantum adiabaticity. We also compare two states evolving under two different Hamiltonians and derive a bound on the Loschmidt echo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfeifer, P., Fröhlich, J.: Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67(4), 759 (1995)

    Article  ADS  Google Scholar 

  2. Deffner, S., Campbell, S.: Quantum speed limits: From heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A Math Theor. 50(45), 453001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Mandelstam, L., Tamm, I.G.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. In: Selected papers, pp. 115–123. Springer (1991)

  4. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Physical Soc. Japan 5(6), 435–439 (1950)

    Article  ADS  Google Scholar 

  5. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boixo, S., Knill, E., Somma, R.D.: Eigenpath traversal by phase randomization. Quantum Inf. Comput. 9(9), 833–855 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Chiang, H.-T., Xu, G., Somma, R.D.: Improved bounds for eigenpath traversal. Phys. Rev. A 89(1), 012314 (2014)

    Article  ADS  Google Scholar 

  8. Lychkovskiy, O., Gamayun, O., Cheianov, V: Quantum many-body adiabaticity, topological thouless pump and driven impurity in a one-dimensional quantum fluid. AIP Conf. Proc. 1936(1), 020024 (2018)

    Article  Google Scholar 

  9. Gamayun, O., Lychkovskiy, O., Burovski, E., Malcomson, M., Cheianov, V.V., Zvonarev, M.B.: Impact of the injection protocol on an impurity’s stationary state. Phys. Rev. Lett. 120, 220605 (2018)

    Article  ADS  Google Scholar 

  10. Lychkovskiy, O., Gamayun, O., Cheianov, V.: Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system. Phys. Rev. B 98, 024307 (2018)

    Article  ADS  Google Scholar 

  11. Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70(22), 3365 (1993)

    Article  ADS  Google Scholar 

  12. Polkovnikov, A., Gritsev, V.: Breakdown of the adiabatic limit in low-dimensional gapless systems. Nat. Phys. 4(6), 477–481 (2008)

    Article  Google Scholar 

  13. Altland, A., Gurarie, V.: Many body generalization of the Landau-Zener problem. Phys. Rev. Lett. 100(6), 063602 (2008)

    Article  ADS  Google Scholar 

  14. Bachmann, S., De Roeck, W., Fraas, M.: The adiabatic theorem for many-body quantum systems. Phys. Rev. Lett. 119, 060201 (2017)

    Article  ADS  Google Scholar 

  15. Lychkovskiy, O., Gamayun, O., Cheianov, V.: Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe. Phys. Rev. Lett. 119(20), 200401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Peres, A.: Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30(4), 1610 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gorin, T., Prosen, T., Seligman, T.H., Žnidarič, M.: Dynamics of loschmidt echoes and fidelity decay. Phys. Rep. 435(2-5), 33–156 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation under the grant No 17-71-20158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Il’in.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Norm of a One–Dimensional Projector

Here we prove the equality

$$ ||\dot{P}_{{\phi}_{t}}||=\sqrt{\langle\dot{\phi}_{t}|\dot{\phi}_{t}\rangle-|\langle\dot{\phi}_{t}|{\phi}_{t}\rangle|^{2}}. $$
(41)

valid for any normalised vector ϕt. To this end we introduce a normalised vector \({\phi }_{t}^{\bot }=(\mathbb {I}-P_{{\phi }_{t}})\dot {\phi }_{t}/\|(\mathbb {I}-P_{{\phi }_{t}})\dot {\phi }_{t}\|\) which is orthogonal to ϕt, and expand \(\dot {\phi }_{t}\):

$$ \dot{\phi}_{t}=P_{{\phi}_{t}}\dot{\phi}_{t}+(\mathbb{I}-P_{{\phi}_{t}}) \dot{\phi}_{t}=\langle {\phi}_{t}| \dot {\phi}_{t} \rangle {\phi}_{t}+ \|(\mathbb{I}-P_{{\phi}_{t}})\dot{\phi}_{t}\| {\phi}_{t}^\bot. $$
(42)

This implies

$$ \dot{P}_{{\phi}_{t}}=\langle \dot{\phi}_{t}|{\phi}_{t}\rangle P_{{\phi}_{t}}+ |{\phi}_{t}^\bot \rangle\langle{\phi}_{t}|\|(\mathbb{I}-P_{{\phi}_{t}})\dot{\phi}_{t}\|+h.c.. $$
(43)

Due to the normalization condition 〈ϕt|ϕt〉 = 1 the first term and its complex conjugate cancel: \(\langle \dot {\phi }_{t}|{\phi }_{t}\rangle P_{{\phi }_{t}}+\langle {\phi }_{t}|\dot {\phi }_{t}\rangle P_{{\phi }_{t}}=\left (\frac {d}{dt}\langle {\phi }_{t}|{\phi }_{t}\rangle \right ) P_{{\phi }_{t}}=0\). Thus

$$ ||\dot{P}_{{\phi}_{t}}||=\|(\mathbb{I}-P_{{\phi}_{t}})\dot{\phi}_{t}\|=\sqrt{\langle\dot{\phi}_{t}|\dot{\phi}_{t}\rangle-|\langle\dot{\phi}_{t}|{\phi}_{t}\rangle|^{2}}. $$
(44)

Appendix B: Proof of the Bound (29)

Consider πt generated by some unitary Wt, \({\Pi }_{t}=W_{t} {\Pi }_{0} W_{t}^{\dag }\). This evolution can be described by a Schrödinger equation with a fictitious Hamiltonian \({\mathscr{H}}_{t}=i\dot {W}_{t}W_{t}^{\dag }\),

$$ i\dot{\Pi}_{t}=[\mathcal{H}_{t},{\Pi}_{t}]. $$
(45)

To derive this equation one should use the fact that \(W_{t}W_{t}^{\dag }=W_{t}^{\dag } W_{t}=1\) and, hence, \( \dot {W_{t}}W_{t}^{\dag }+W_{t} \dot {W_{t}}^{\dag }= \dot {W_{t}}^{\dag } W_{t}+W_{t}^{\dag } \dot {W_{t}}=0 \). Observe that

$$ \|\mathcal{H}_{t}\|=\|\dot{W}_{t}\|. $$
(46)

From (12) and (45) we obtain

$$ \dot{\Pi}_{t}=i {\Pi}_{t}\mathcal{H}_{t}(\mathbb{I}-{\Pi}_{t})-i(\mathbb{I}-{\Pi}_{t})\mathcal{H}_{t} {\Pi}_{t}. $$
(47)

Since \(\dot {\Pi }_{t}\) is self-adjoint operator we can estimate its norm as

$$ \begin{array}{@{}rcl@{}} \|\dot{\Pi}_{t}\|&=&\sup\limits_{\|\varphi\|=1}\langle\varphi|\dot{\Pi}_{t}|\varphi\rangle= 2\sup\limits_{\|\varphi\|=1}\text{Im}\langle\varphi|(\mathbb{I}-{\Pi}_{t})\mathcal{H}_{t} {\Pi}_{t}|\varphi\rangle\\ &\leqslant&2\sup\limits_{\|\varphi\|=1}\|(\mathbb{I}-{\Pi}_{t})\varphi\|\|\mathcal{H}_{t}\|\|{\Pi}_{t}\varphi\|. \end{array} $$
(48)

Further, since πt is a projector and ∥φ∥ = 1, we have \(\|(\mathbb {I}-{\Pi }_{t})\varphi \|=\sqrt {1-\|{\Pi }_{t}\varphi \|^{2}}\). Therefore

$$ \|\dot{\Pi}_{t}\|\leqslant2\|\mathcal{H}_{t}\|\sup\limits_{\|\varphi\|=1} \sqrt{\|{\Pi}_{t}\varphi\|^{2}(1-\|{\Pi}_{t}\varphi\|^{2})}. $$
(49)

As \(\sup _{x\in [0,1]}\sqrt {x(1-x)}=1/2\) then

$$ \|\dot{\Pi}_{t}\|\leqslant\|\mathcal{H}_{t}\|. $$
(50)

In view of (46) this proves the bound (29).

We note that the equality in (50) can be reached for \({\mathscr{H}}_{t}={\mathscr H}_{t}\equiv i[\dot {\Pi }_{t},{\Pi }_{t}]\) introduced in Section 3. Let us prove this fact. First, one verifies that \({\mathscr H}_{t}\) indeed generates πt via (45), see (12), and hence

$$ \|\dot{\Pi}_{t}\|\leqslant\|{\mathscr H}_{t}\|. $$
(51)

On the other hand

$$ {\mathscr H}_{t}=i(\mathbb{I}-{\Pi}_{t})\dot{\Pi}_{t} {\Pi}_{t}-i {\Pi}_{t}\dot{\Pi}_{t}(\mathbb{I}-{\Pi}_{t}) $$
(52)

and we get

$$ \|{\mathscr H}_{t}\|\leqslant\|\dot{\Pi}_{t}\| $$
(53)

analogously to (50). Inequalities (51) and (53) imply

$$ \|\dot{\Pi}_{t}\|=\|{\mathscr H}_{t}\|. $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, N., Lychkovskiy, O. Quantum Speed Limits For Adiabatic Evolution, Loschmidt Echo and Beyond. Int J Theor Phys 60, 640–649 (2021). https://doi.org/10.1007/s10773-020-04458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04458-5

Keywords

Navigation