Skip to main content
Log in

Quantum Fisher Information: Probe to Measure Fractional Evolution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We develop an analytical solution of fractional Schrödinger equation to explain the interaction between a two-level atom and a single electromagnetic field mode inside a cavity. Based on this solution, two different cases are discussed; the first one reflects the standard Jaynes Cummings model, while the second solution gives rise to a wave equation for a dipole interacted with a field in semi-classical sense. By controlling different parameters inside cavity, the estimation degree in terms of quantum Fisher information is investigated. The obtained results show that the precision estimation increases as the detuning decreases and number of photons inside cavity increases. Moreover robust estimation is obtained for the standard Jaynes Cummings model. To measure the amount of information, a comparative study between von Neumann entropy and quantum Fisher information show the same behavior. As a result, we conclude that quantum Fisher information may detect entanglement of the interacted atom-field system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Asjad, M., Saif, F.: Engineering entanglement mechanically. Phys. Lett. A 376, 2608–2612 (2012)

    Article  ADS  Google Scholar 

  3. Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B: At. Mol. Opt. Phys. 48, 065502, (8pp) (2015)

    Article  ADS  Google Scholar 

  4. Haq, S., Saif, F.: Extended entanglement to quantum networks. Optik 124, 5914–5917 (2013)

    Article  ADS  Google Scholar 

  5. Saif, F., Haq, S.: Remote entanglement for quantum networks. Optik 125, 6616–6619 (2014)

    Article  ADS  Google Scholar 

  6. Bennett, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Esmail, S., Salah, A., Hassan, S.: Statistical aspects and dynamical entanglement for a two-level atom moving on along cavity length of x-direction: atomic position distribution. Braz. J. Phys. 49, 438–448 (2019)

    Article  ADS  Google Scholar 

  9. Ullah, S., Qureshi, H.S., Tiaz, G., Ghafoor, F., Saif, F.: Coherence control of entanglement dynamics of two-mode Gaussian state via Raman driven quantum beat laser using Simon’s criterion. Appl. Opt. 1, 197 (2019)

    Article  ADS  Google Scholar 

  10. Rameez, I., Khosa, I., Saif, F., Bergou, J.A.: Generation of atomic momentum cluster and graph states via cavity QED. Quantum Inf. Process 12, 129–148 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Drnovšek, R.: The von Neumann entropy and unitary equivalence of quantum states. Line and Multilin Alge. 62, 12 (2014)

    MathSciNet  Google Scholar 

  12. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  13. Zheng, Q., Uao, Y., Li, Y.: Optimal quantum channel estimation of two interacting qubit subject to decoherence. Eur. Phys. J. D. 68, 170 (2014)

    Article  ADS  Google Scholar 

  14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Boss, J.M., Cujia, K.S., Zopes, J., Degen, C.L.: Quantum sensing with arbitrary frequency resolution. Science 356, 6340 (2017)

    Article  Google Scholar 

  16. Safranek, D.: Simple expression for the quantum Fisher information matrix. Phys. Rev. A. 97, 042322 (2018). and references therein

    Article  ADS  Google Scholar 

  17. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A. 87, 022337 (2013)

    Article  ADS  Google Scholar 

  18. El Anouz, K., El Allati, A., Metwally, N., Mourabit, T.: Estimating the teleported initial parameters of a single and two-qubit systems. Appl. Phys. B. 125, 11 (2019)

    Article  ADS  Google Scholar 

  19. Metwally, N., Hassan, S.S.: Estimation of pulsed driven qubit parameters via quantum Fisher information. Las. Phys. Lett. 14, 11 (2017)

    Google Scholar 

  20. Pezze, L., Smerzi, A.: Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Phys. Rev Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Obada, A.-S.F., Abdel-Khalek, S.: Entanglement evaluation with atomic Fisher information. Physica A. 389, 891 (2010)

    Article  ADS  Google Scholar 

  22. Bagley, R.L., Torvik, P.L.: On the fractional calculus models of viscoelastic behaviour. J. Rheol. 30, 133–155 (1986)

    Article  ADS  MATH  Google Scholar 

  23. Odibat, Z.: Analytic study on linear systems of fractional differential equations. Comp. Math. Appl. 59, 3 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  25. Nikolai, L.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A. 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 8 (2004)

    Article  MATH  Google Scholar 

  27. Lu, L., Yu, X.: Time fractional evolution of the two-level system interacting with light field. Laser Phys. Lett. 14, 115202 (2017)

    Google Scholar 

  28. Zidan, N., Abdel-Hameed, H.F., Metwally, N.: Quantum Fisher information of atomic system interacting with a single cavity mode in the presence of Kerr medium. Sci. Rep. 9, 2699 (2019)

    Article  ADS  Google Scholar 

  29. Hamada, A. -H., Nour, Z., Metwally, N.: Quantum Fisher information of two superconducting charge qubits under dephasing noisy channel. Inter. Jour. of Mod. Phys. B. 32, 22 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Metwally, N.: Fisher information of accelerated two-qubit systems. Inter. Jour. of Mod. Phys. B. 32, 5 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Chin, W., Huelga, F., Plenio, B.: Quantum metrology in Non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  32. Ming, X., Wang, X., Sun, C.P.: Quantum fisher information flow in Non-Markovian processes of open systems. Phys Rev A. 82, 042103 (2010)

    Article  ADS  Google Scholar 

  33. Metwally, N., Hassan, S.S.: Estimation of pulsed driven qubit parameters via quantum Fisher information. Las. Phys. Lett. 14, 115204 (2017)

    Article  ADS  Google Scholar 

  34. Lu, X.M., Sun, Z., Wang, X., Luo, S.: Broadcasting quantum Fisher information. Phys. Rev. A 87, 050302, (R) (2013)

    Article  ADS  Google Scholar 

  35. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  36. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  37. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  38. Salah, A., Esmail, S.: A new laplace iteration technique for solving a generalize fractional nonlinear schrodinger equation. Math. Sci. Lett. 5, 2 (2016)

    Article  Google Scholar 

  39. El Anouz, K., El Allati, A., Metwally, N.: Teleportation two-qubit state by using two different protocols. Opt. Quant. Electron. 51, 203 (2019)

    Article  Google Scholar 

  40. El Allati, A., Metwally, N., Hassouni, Y.: Transfer information remotely via noise entangled coherent channels. Opt. Commun. 284, 519 (2011)

    Article  ADS  MATH  Google Scholar 

  41. Yao, F., Che, Y., Su, Y., Liang, H., Pei, J., Wang, X.: Enhancing the sensitivity of rotation in a multiatom Sagnac interferometer. Phys. Rev. A 99, 052128 (2019)

    Article  ADS  Google Scholar 

  42. Xia, Y., Zhuang, Q., Clark, W., Zhang, Z.: Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement. Phys. Rev. A 99, 012328 (2019)

    Article  ADS  Google Scholar 

  43. Lu, X., Yu, S., Oh, C.: Robust quantum metrological schemes based on protection of quantum Fisher information. Nature Comm. 6, 7282 (2015)

    Article  ADS  Google Scholar 

  44. Metwally, N.: Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field. Physica E: Low-dimen. Sys. and Nano. 100, 14–23 (2017)

    Article  ADS  Google Scholar 

  45. Zidan, N., Abdel-Hameed, H.F., Metwally, N.: Quantum Fisher information of atomic system interacting with a single cavity mode in the presence of Kerr medium. Scien Repo. 9, 2699 (2019)

    Article  ADS  Google Scholar 

  46. El Anouz, K., El Allati, A., Metwally, N.: Different indicators for Markovian and non-Markovian dynamics. Phys. Lett. A. 384, 5 (2019)

    MathSciNet  Google Scholar 

  47. El Anouz, K., El Allati, A., El Baz, M.: Teleporting quantum Fisher information for even and odd coherent states. Opt. Soc. of Amer. B. 37, 1 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

K. EL ANOUZ acknowledges financial support for this research from the ”Centre National pour la Recherche Scientique et Technique” CNRST, Morocco. A. El Allati acknowledges the hospitality of the Abdus Salam International Center for Theoretical Physics (Trieste, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. El Anouz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The fractional derivative meaning have been established using different methods, the most popular ones are Caputo and Riemann-Liouville concepts [37, 38]. Both methods are basically defined using Riemann-Liouville integration. For any function ζ(t) of order α > 0, it is indicates as

$$ I^{\alpha} \zeta(t)=\frac{1}{{\Gamma}(\alpha)} {{\int}_{0}^{t}} (t-\alpha)^{\alpha-1} \zeta(\tau) d\tau, \qquad \alpha>0, \quad t>0, $$
(22)

where Γ(α) called Gamma Function [23] and Iα verify the following properties

$$ \begin{array}{@{}rcl@{}} I^{\alpha} I^{\beta} \zeta (t)&=& I^{\alpha+\beta} \zeta (t), \\ I^{\alpha} t^{\gamma}&=& \frac{{\Gamma}(\gamma+1)}{{\Gamma}(\alpha+\gamma+1)}. \end{array} $$
(23)

Using the Caputo notion, the fractional derivative of ζ(t) takes the following form

$$ D^{\alpha} \zeta(t)=I^{j-\alpha} D^{j} \zeta(t)= \frac{1}{{\Gamma}(j-\alpha)} {{\int}_{0}^{t}} \frac{\zeta^{(j)}(\tau)}{(t-\tau)^{\alpha-j+1}} d\tau. $$
(24)

The main advantage of Caputo’s methods is based on its possibility to solve the fractional derivative system with variable initial conditions. However, in order to improve the solution of linear fractional differential equations we investigate the stability properties. Consider the following fractional differential linear system,

$$ \frac{d^{\alpha}}{d t^{\alpha}}v(t)=M v(t), \qquad v(0)=v_{0}, $$
(25)

where \(v\in \mathbb {R}^{n}\) and \(M\in \mathbb {R}^{n} \times \mathbb {R}^{n}\), moreover αi and \(\frac {\partial ^{\alpha _{i}}}{\partial t^{\alpha _{i}}}\) for i = 1, ... , n are the fractional orders and Caputo fractional derivative, respectively. If α1 = α2,.... = αn then the solution of (3) is improved in Ref. [23]. Whereas the general solution is then expressed in terms of Mittag-Leffler function, Eα(tα) as,

$$ v(t)=u E_{\alpha}(\xi t^{\alpha}), $$
(26)

where ξ and u are an arbitrary constant and vector to be determined, respectively. However, Eα(s) indicates the Mittag-Leffler function of a single parameter α, it takes the following form

$$ E_{\alpha} (s)=\sum\limits_{j=0}^{\infty} \frac{s^{j}}{\Gamma (\alpha j+1)}. $$
(27)

Substituting (26) into (25) allows to the following result

$$ u\xi E_{\alpha}(\xi t^{\alpha})= M u E_{\alpha}(\xi t^{\alpha}), $$
(28)

after canceling the nonzero factor, Eα(ξtα) gives rise to

$$ (M-\xi I_{n\times n}) u=0, $$
(29)

where In×n represents the identity matrix of (n × n) dimension. Therefore we conclude from (29) that ξ and u indicate the eigenvalue and eigenvector of the matrix M. Finally the general solution of the linear fractional system is then given by

$$ v(t)=C_{1} E_{\alpha} (k_{1} t^{\alpha}) u_{1}+ C_{2} E_{\alpha} (k_{2} t^{\alpha}) u_{2}+...+C_{n} E_{\alpha} (k_{n} t^{\alpha}) u_{n}, $$
(30)

where, Ci (i = 1,..n) are arbitrary constants and Eα(ξitα) may be calculated from (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Anouz, K., El Allati, A., Salah, A. et al. Quantum Fisher Information: Probe to Measure Fractional Evolution. Int J Theor Phys 59, 1460–1474 (2020). https://doi.org/10.1007/s10773-020-04415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04415-2

Keywords

Navigation