Skip to main content
Log in

Renormalization Group Study of the Mixed Spin-1 and Spin-3/2 Blume-Emery-Griffiths Model with Attractive Biquadratic Coupling

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The mixed spin-1 and spin-3/2 Blume-Emery-Griffiths model with attractive biquadratic coupling is investigated in the framework of the Migdal-Kadanoff Renormalization Group method. By changing the ratio R > 0 of biquadratic and bilinear exchange interactions and according to the different values of crystal field interactions, we have determined six main types of phase diagrams. The full flow in the parameters space of the Hamiltonian was established and the fixed points obtained are drawn up in a table. In addition, we have determined the eigenvalues of the transformation of the group in the vicinity of the critical points. Finally, the introduction of a positive biquadratic interaction was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blume, M., Emery, V.J., Griffiths, R.B.: Phys. Rev. A. 4, 1071 (1971)

    Article  ADS  Google Scholar 

  2. Newman, K.E., Dow, J.D.: Phys. Rev. B. 27, 7495 (1983)

    Article  ADS  Google Scholar 

  3. Lajzerowicz, J., Sivardière, J.: 11, 2090 (1975); 11, 2101 (1975). Phys. Rev. A. 11, 2079 (1975)

    Article  ADS  Google Scholar 

  4. Schick, M., Shih, W.H.: Phys. Rev. B. 34, 1797 (1986)

    Article  ADS  Google Scholar 

  5. Berker, A.N., Ostlund, S., Putuam, F.A.: Phys. Rev. B. 17, 3650 (1978)

    Article  ADS  Google Scholar 

  6. Berker, A.N., Wortis, M.: Phys. Rev. B. 14, 4946 (1976)

    Article  ADS  Google Scholar 

  7. Hoston, W., Berker, A.N.: Phys. Rev. Lett. 67, 1027 (1991)

    Article  ADS  Google Scholar 

  8. Bakchich, A., El Bouziani, M.: Phys. Rev. B. 56, 11155 (1997)

    Article  ADS  Google Scholar 

  9. Sivardière, J., Blume, M.: Phys. Rev. B. 5, 1126 (1972)

    Article  ADS  Google Scholar 

  10. Krinsky, S., Mukamel, D.: Phys. Rev. B. 11, 399 (1975)

    Article  ADS  Google Scholar 

  11. Sá Barreto, F.C., De Alcantara Bonfim, O.F.: Physica A. 172, 378 (1991)

    Article  ADS  Google Scholar 

  12. Kaneyoshi, T., Jaščur, M.: Phys. Lett. A. 177, 172 (1993)

    Article  ADS  Google Scholar 

  13. Bakchich, A., Bassir, A., Benyoussef, A.: Physica A. 195, 188 (1993)

    Article  ADS  Google Scholar 

  14. Bakchich, A., El Bouziani, M.: J. Phys.: Cond. Matter. 13, 91 (2001)

    ADS  Google Scholar 

  15. Kahn, O.: Molecular Magnetism. VCH, New York (1993)

    Google Scholar 

  16. Tabasum, M.R., Zighem, F., De La Torre Medina, J., Encinas, A., Piraux, L., Nysten, B.: Nanotechnology. 25, 245707 (2014)

    Article  ADS  Google Scholar 

  17. Prinz, G.A.: Science. 282, 1660 (1998)

    Article  Google Scholar 

  18. Stanica, N., Stager, C.V., Cimpoesu, M., Andruh, M.: Polyhedron. 17, 1787 (1998)

    Article  Google Scholar 

  19. Albayrak, E.: Physica A. 375, 174 (2007)

    Article  ADS  Google Scholar 

  20. Karimou, M., Yessoufou, R., Hontinfinde, F., Cond, W.J.: Matt. Phys. 5, 187 (2015)

    Google Scholar 

  21. Yessoufou, R.A., Bekhechi, S., Hontinfinde, F.: Eur. Phys. J. B. 81, 137 (2011)

    Article  ADS  Google Scholar 

  22. Jabar, A., Belhaj, A., Labrim, H., Bahmad, L., Hassanain, N., Benyoussef, A.: Superlatt. Microstruct. 78, 171 (2014)

    Article  Google Scholar 

  23. Sidi Ahmed, S., Bahmad, L., Benyoussef, A., El Kenz, A.: Superlatt. Microstruct. 109, 841 (2017)

    Article  ADS  Google Scholar 

  24. Sidi Ahmed, S., Bahmad, L., El Yousfi, A., Benyoussef, A., El Kenz, A., El Hachimi, A.G.: Superlatt. Microstruct. 123, 1 (2018)

    Article  ADS  Google Scholar 

  25. Alrajhi, A., Hachem, N., Lafhal, A., El Antari, A., El Bouziani, M., Madani, M., El Falaki, M.: J. Adv. Phys. 7, 261 (2018)

    Article  Google Scholar 

  26. Migdal, A.A., Eksp, Z.: Sov. Phys. JETP 42, 743 (1975). Teor. Fiz. 69, 810 (1975)

    Google Scholar 

  27. Kadanoff, L.P.: Ann. Phys. (NY). 100, 359 (1976)

    Article  ADS  Google Scholar 

  28. Madani, M., Gaye, A., El Bouziani, M., Alrajhi, A.: Physica A. 437, 396 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hasenbusch, M.: Phys. Rev. B. 82, 174433 (2010)

    Article  ADS  Google Scholar 

  30. Hachem, N., Lafhal, A., Zahir, H., El Bouziani, M., Madani, M., Alrajhi, A.: Superlatt. Microstr. 111, 927 (2017)

    Article  ADS  Google Scholar 

  31. Lipowsky, R., Wagner, H., Phys, Z.: B - Condens. Matter. 42, 355 (1981)

    Google Scholar 

  32. Nienhuis, B., Nauenberg, M.: Phys. Rev. Lett. 35, 477 (1975)

    Article  ADS  Google Scholar 

  33. Blume, M.: Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  34. Capel, H.W.: Physica. 32, 966 (1966)

    Article  ADS  Google Scholar 

  35. Abubrig, O.F., Horváth, D., Bobák, A., Jaščur, M.: Physica A. 296, 437 (2001)

    Article  ADS  Google Scholar 

  36. Bourass, M., Zradba, A., Zouhair, S., El Antari, A., El Bouziani, M., Madani, M., Alrajhi, A.: J. Supercond. Nov. Magn. 31, 541 (2018)

    Article  Google Scholar 

  37. El Antari, A., Zahir, H., Hasnaoui, A., Hachem, N., Alrajhi, A., Madani, M., El Bouziani, M.: Inter. J. Theor. Phys. 57, 2330 (2018)

    Article  Google Scholar 

  38. Lafhal, A., Hachem, N., Zahir, H., El Bouziani, M., Madani, M., Alrajhi, A.: J. Stat. Phys. 174, 40 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Bouziani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • The fixed point C* of second-order transition:

In the vicinity of the fixed point C* of second-order transition, we have the following relations:

$$ J=-\frac{13}{4}C;{\varDelta}_{\mathrm{A}}\to +\infty; {\varDelta}_{\mathrm{B}}\to -\infty \mathrm{and}\kern0.37em \frac{\varDelta_{\mathrm{B}}}{\varDelta_{\mathrm{A}}}\to 0 $$
(11)

Taking into account the relations between the interactions (11), the recursion Eqs. (4) are reduced to:

$$ \Big\{{\displaystyle \begin{array}{c}{J}^{\prime }=\frac{13}{12}\ {b}^{d-1}\ln \left(\frac{e^{\frac{6}{13}J}\cosh \left(\frac{12}{13}J\right)+{e}^{-\frac{6}{13}J}}{e^{-\frac{6}{13}J}\cosh \left(\frac{12}{13}J\right)+{e}^{\frac{6}{13}J}}\right)\ \\ {}{C}^{\prime }=-\frac{4}{13}{J}^{\prime}\\ {}{\varDelta}_A^{\prime }={b}^{d-1}\ {\varDelta}_A\\ {}{\varDelta}_B^{\prime }={b}^{d-1}\ {\varDelta}_B\end{array}} $$
(12)

This leads to the coordinates of the fixed point C* as shown in Table 2; for d = 2: C(1.5639; 0; +∞; −∞; −0.4812) and for d = 3: C(0.7674; 0; +∞; −∞; −0.2361).

In order to calculate the eigenvalues corresponding to the fixed point C*, we diagonalize the associated matrix M:

$$ M=\left(\begin{array}{ccccc}\frac{\partial {J}^{\prime }}{\partial J}& \frac{\partial {J}^{\prime }}{\partial C}& \frac{\partial {J}^{\prime }}{\partial K}& \frac{\partial {J}^{\prime }}{\partial {\varDelta}_A}& \frac{\partial {J}^{\prime }}{\partial {\varDelta}_B}\\ {}\frac{\partial {C}^{\prime }}{\partial J}& \frac{\partial {C}^{\prime }}{\partial C}& \frac{\partial {C}^{\prime }}{\partial K}& \frac{\partial {C}^{\prime }}{\partial {\varDelta}_A}& \frac{\partial {C}^{\prime }}{\partial {\varDelta}_B}\\ {}\frac{\partial {K}^{\prime }}{\partial J}& \frac{\partial {K}^{\prime }}{\partial C}& \frac{\partial {K}^{\prime }}{\partial K}& \frac{\partial {K}^{\prime }}{\partial {\varDelta}_A}& \frac{\partial {K}^{\prime }}{\partial {\varDelta}_B}\\ {}\frac{\partial {\varDelta}_A^{\prime }}{\partial J}& \frac{\partial {\varDelta}_A^{\prime }}{\partial C}& \frac{\partial {\varDelta}_A^{\prime }}{\partial K}& \frac{\partial {\varDelta}_A^{\prime }}{\partial {\varDelta}_A}& \frac{\partial {\varDelta}_A^{\prime }}{\partial {\varDelta}_B}\\ {}\frac{\partial {\varDelta}_B^{\prime }}{\partial J}& \frac{\partial {\varDelta}_B^{\prime }}{\partial C}& \frac{\partial {\varDelta}_B^{\prime }}{\partial K}& \frac{\partial {\varDelta}_B^{\prime }}{\partial {\varDelta}_A}& \frac{\partial {\varDelta}_B^{\prime }}{\partial {\varDelta}_B}\end{array}\right) $$
(13)

where the derivatives are calculated at the fixed point C*. Therefore, the eigenvalues found are: λ1 = 3, λ2 = 2.25 and λ3 = 0.75 for d = 2, and λ1 = 9, λ2 = 2.7659 and λ3 = 0.9219 for d = 3 (Table 3).

  • The Fixed Point T* Representing the Tricritical Points

The flow is very instable in the vicinity of the fixed point T*, which does not allow us to find relations between the interactions. For this reason, the coordinates of the point T* are obtained numerically, and the eigenvalues of the matrix M in the vicinity of T* are also calculated using a numerical program.

As shown in Table 2, we found the following coordinates of the fixed point T*: T(−0.29; 0.83; −16.8; −1.74; 1.16) for d = 2 and T(0.70; 1.91; −71.07; 1.71; 2.79) for d = 3.

In addition, our program gives the following eigenvalues as presented in Table 3: λ1 = 8.2140, λ2 = 2.7061, λ3 = 0.2627, λ4 = 0.1541 and λ5 = 0.0739 for d = 2, and λ1 = 13.4695, λ2 = 8.9425, λ3 = 0.0039, λ4 = −0.0009 and λ5 = −0.00005 for d = 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafhal, A., El Antari, A., Hachem, N. et al. Renormalization Group Study of the Mixed Spin-1 and Spin-3/2 Blume-Emery-Griffiths Model with Attractive Biquadratic Coupling. Int J Theor Phys 59, 1165–1178 (2020). https://doi.org/10.1007/s10773-020-04396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04396-2

Keywords

Navigation