Skip to main content
Log in

Source parameters for small-moderate earthquakes in Marmara Region (Turkey)

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The main aim of this study is to investigate the self-relation and self-similarity of earthquakes in and around the Marmara Sea (NW Turkey) by using these obtained source parameters. With this purpose, spectral source parameters for 77 small to moderate earthquake (3.5 ≤ ML ≤ 5.2) that occurred during 2004–2018 have been determined from P and S wave spectra according to Brune’s source model by using regional broadband seismograms. The average ratio of P/S wave corner frequency is found to be 1.3 that suggesting higher corner frequency for P wave. The static stress drops range from 0.1 and 136 MPa with a median value of 9.8 MPa (98 bars). The high stress drops for these events can indicate high frictional strength and low strain-rate of the faults. Similarly, the low values of the stress drop can indicate a general weakness of the faults in the study area. There is no clear dependence between the seismic moment and the static stress drop in the analyzed events but some events which have lower seismic moment value also have lower stress drop. Obtaining results indicated the corner frequency decreases with increasing of the seismic moment. Also, a slight depth dependence of the corner frequency has been observed for the analyzed events. Shallower events have larger corner frequency value than deeper events. Also, a clear depth dependence of the stress drop values has not been observed. However, the depth dependence of the seismic moment is seen more clearly. Our results indicated that the deeper events have larger seismic moment values in the study area. In spite of scattering in small events, a linear relationship between local magnitude (ML) and moment magnitude (MW) could be obtained as MW = 1.4261(± 0.31) + 0.6399(± 0.08)ML from P waves spectra and MW = 0.0136(± 0.21) + 0.9883(± 0.05)ML from S wave spectra and calculated MW values are consistent with waveform inversion (centroid moment tensor — CMT) results. These relationships may be useful for seismic hazard studies in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abercrombie, R.E., 1995, Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5-km depth. Journal of Geophysical Research: Solid Earth, 100, 24015–24036.

    Google Scholar 

  • Allen, T.I., Gibson, G., Brown, A., and Cull, J.P., 2004, Depth variation of seismic source scaling relations: implications for earthquake hazard in southeastern Australia. Tectonophysics, 390, 5–24.

    Google Scholar 

  • Allmann, B.P. and Shearer, P.M., 2007, Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. Journal of Geophysical Research, 112, B04305. https://doi.org/10.1029/2006JB004395

    Google Scholar 

  • Allmann, B.P. and Shearer, P.M., 2009, Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research: Solid Earth, 114, B01310. https://doi.org/10.1029/2008JB005821

    Google Scholar 

  • Ambraseys, N.N., 1970, Some characteristic features of the Anatolian fault zone. Tectonophysics, 9, 143–165.

    Google Scholar 

  • Armijo, R., Meyer, B., Hubert, A., and Barka, A., 1999, Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology, 27, 267–270.

    Google Scholar 

  • Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A., 2002, Asymmetric slip partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian fault? Terra Nova, 14, 80–86.

    Google Scholar 

  • Armijo, R., Meyer, B., Barka, A., Chabalier, J.B., Hubert-Ferrari, A., and Çakir, Z., 2000, The fault breaks of the 1999 earthquakes in Turkey and the tectonic evolution of the Sea of Marmara: a summary. In: Barka, A., Kozacı, Ö., Akyüz, S., and Altunel, E. (eds.), The 1999 Izmit and Düzce Earthquakes: Preliminary Results. İstanbul Technical University Press, İstanbul, p. 55–62.

    Google Scholar 

  • Armijo, R., Pondard, N., Meyer, B., Uçarkus, G., de Lépinay, B.M., Malavieille, J., Dominguez, S., Gustcher, M.A., Schmidt, S., Beck, C., and Cagatay, N., 2005, Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): implications for seismic hazard in Istanbul. Geochemistry, Geophysics, Geosystems, 6, https://doi.org/10.1029/2004GC000896

  • Asano, K., Iwata, T., and Irikura, K., 2003, Source characteristics of shallow intraslab earthquakes derived from strong-motion simulations. Earth, Planets and Space, 55, e5–e8.

    Google Scholar 

  • Ataeva, G., Shapira, A., and Hofstetter, A., 2015, Determination of source parameters for local and regional earthquakes in Israel. Journal of Seismology, 19, 389–401.

    Google Scholar 

  • Barka, A., 1992, The north Anatolian fault zone. Annales Tectonicae, 6, 164–195 (Suppl).

    Google Scholar 

  • Barka, A., 1996, Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of America, 86, 1238–1254.

    Google Scholar 

  • Barka, A., 1999, The 17 August 1999 Izmit earthquake. Science, 285, 1858–1859.

    Google Scholar 

  • Barka, A. and Kadinsky-Cade, K., 1988, Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics, 7, 663–684.

    Google Scholar 

  • Bayrakci, G., Laigle, M., Bécel, A., Hirn, A., Taymaz, T., Yolsal-Çevikbilen, S., and Team, S., 2013, 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian fault. Geophysical Journal International, 194, 1335–1357.

    Google Scholar 

  • Bilek, S.L. and Lay, T., 1998, Variation of interplate fault zone properties with depth in the Japan subduction zone. Science, 281, 1175–1178.

    Google Scholar 

  • Brune, J.N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009.

    Google Scholar 

  • Brune, J.N., 1971, Correction [to “Tectonic stress and the spectra, of seismic shear waves from earthquakes”]. Journal of Geophysical Research, 76, 5002. https://doi.org/10.1029/JB076i020p05002

    Google Scholar 

  • Boatwright, J., 1980, A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bulletin of the Seismological Society of America, 70, 1–27.

    Google Scholar 

  • Boatwright, J., Fletcher, J.B., and Fumal, T.E., 1991, A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized earthquakes. Bulletin of the Seismological Society of America, 81, 1754–1782.

    Google Scholar 

  • Bulut, F., Bohnhoff, M., Ellsworth, W.L., Aktar, M., and Dresen, G., 2009, Microseismicity at the North Anatolian fault in the Sea of Marmara offshore Istanbul, NW Turkey. Journal of Geophysical Research: Solid Earth, 114. https://doi.org/10.1029/2008JB006244

  • Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., and Brodsky, E.E., 2011, Stress drop during earthquakes: effect of fault roughness scaling. Bulletin of the Seismological Society of America, 101, 2369–2387.

    Google Scholar 

  • Chouet, B., Aki, K., and Tsujiura, M., 1978, Regional variation of the scaling law of earthquake source spectra. Bulletin of the Seismological Society of America, 68, 49–79.

    Google Scholar 

  • Demirbağ, E., Rangin, C., Le Pichon, X., and Şengör, A.C., 2003, Investigation of the tectonics of the Main Marmara Fault by means of deep-towed seismic data. Tectonophysics, 361, 1–19.

    Google Scholar 

  • Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Y., and Trampert, J., 2013a, The deep structure of the North Anatolian fault zone. Earth and Planetary Science Letters, 373, 109–117.

    Google Scholar 

  • Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., and Villasenor, A., 2013b, Multiscale full waveform inversion. Geophysical Journal International, 194, 534–556.

    Google Scholar 

  • Fletcher, J.B., 1980, Spectra from high-dynamic range digital recordings of Oroville, California aftershocks and their source parameters. Bulletin of the Seismological Society of America, 70, 735–755.

    Google Scholar 

  • Franceschina, G., Kravanja, S., and Bressan, G., 2006, Source parameters and scaling relationships in the Friuli-Venezia Giulia (Northeastern Italy) region. Physics of the Earth and Planetary Interiors, 154, 148–167.

    Google Scholar 

  • Frankel, A., 1981, Source parameters and scaling relationships of small earthquakes in the northeastern Caribbean. Bulletin of the Seismological Society of America, 71, 1173–1190.

    Google Scholar 

  • Garcia, J.G., Romacho, M.D., and Jiménez, A., 2004, Determination of near-surface attenuation, with κ parameter, to obtain the seismic moment, stress drop, source dimension and seismic energy for micro-earthquakes in the Granada Basin (Southern Spain). Physics of the Earth and Planetary Interiors, 141, 9–26.

    Google Scholar 

  • Gök, R., Hutchings, L., Mayeda, K., and Kalafat, D., 2009, Source parameters for 1999 North Anatolian fault zone aftershocks. Pure and Applied Geophysics, 166, 547–566.

    Google Scholar 

  • Hanks, T.C. and Wyss, M., 1972, The use of body-wave spectra in the determination of seismic-source parameters. Bulletin of the Seismological Society of America, 62, 561–589.

    Google Scholar 

  • Hanks, T.C. and Kanamori, H., 1979, A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84, 2348–2350.

    Google Scholar 

  • Hardebeck, J.L. and Hauksson, E., 1997, Static stress drop in the 1994 Northridge, California, aftershock sequence. Bulletin of the Seismological Society of America, 87, 1495–1501.

    Google Scholar 

  • Hardebeck, J.L. and Aron, A., 2009, Earthquake stress drops and inferred fault strength on the Hayward fault, east San Francisco Bay, California. Bulletin of the Seismological Society of America, 99, 1801–1814.

    Google Scholar 

  • Haskell, N.A., 1964, Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.

    Google Scholar 

  • Havskov, J. and Ottemöller, L., 2010, Location. In: Havskov, J. and Ottemöller, L. (eds.), Routine Data Processing in Earthquake Seismology. Springer, Dordrecht, p. 101–149.

    Google Scholar 

  • Horasan, G., Ayşe, K.Ö., Aysun, B.G., and Niyazi, T., 1998, S-wave attenuation in the Marmara Region, northwestern Turkey. Geophysical Research Letters, 25, 2733–2736.

    Google Scholar 

  • Huang, M.H., Fielding, E.J., Dickinson, H., Sun, J., Gonzalez-Ortega, J.A., Freed, A.M., and Bürgmann, R., 2017, Fault geometry inversion and slip distribution of the 2010 Mw 7.2 El Mayor-Cucapah earthquake from geodetic data. Journal of Geophysical Research: Solid Earth, 122, 607–621.

    Google Scholar 

  • Hubert-Ferrari, A., Barka, A., Jacques, E., Nalbant, S.S., Meyer, B., Armijo, R., Tapponnier, P., and King, G.C., 2000, Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake. Nature, 404, 269.

    Google Scholar 

  • Imren, C., Le Pichon, X., Rangin, C., Demirbağ, E., Ecevitoğlu, B., and Görür, N., 2001, The North Anatolian Fault within the Sea of Marmara: a new interpretation based on multi-channel seismic and multi-beam bathymetry data. Earth and Planetary Science Letters, 186, 143–158.

    Google Scholar 

  • Irmak, T.S., 2000, The source-rupture processes of recent large Turkey earthquakes. Individual studies by participants to the International Institute of Seismology and Earthquake Engineering, 36, 131–143.

    Google Scholar 

  • Irmak, T.S., Grosser, H., Özer, M.F., Woith, H., and Bariş, S., 2007, The 24 October 2006 Gemlik Earthquake (M = 5.2). Geophysics Research Abstract, 9, 10212.

    Google Scholar 

  • Jin, A., Moya, C.A., and Ando, M., 2000, Simultaneous determination of site responses and source parameters of small earthquakes along the Atotsugawa fault zone, central Japan. Bulletin of the Seismological Society of America, 90, 1430–1445.

    Google Scholar 

  • Jones, L.E. and Helmberger, D.V., 1996, Seismicity and stress-drop in the Eastern Transverse Ranges, southern California. Geophysical Research Letters, 23, 233–236.

    Google Scholar 

  • Kalafat, D., 1987, Bati Turkiye’de Kabuk Yapisi ve ust manto arastirilmasi. Deprem Arastirma Bulteni, 59, 43–64. (in Turkish)

    Google Scholar 

  • Karabulut, H., Özalaybey, S., Taymaz T., Aktar, M., Selvi, O., and Kocaoğlu, A., 2003, A tomographic image of the shallow crustal structure in the Eastern Marmara. Geophysical Research Letters, 30. https://doi.org/10.1029/2003GL018074

  • Keilis-Borok, V.I., 1960, Investigation of the mechanism of earthquakes. Soviet Research Geophysics (English translation), 4, 29.

    Google Scholar 

  • Kinscher, J., Krüger, F., Woith, H., Lühr, B.G., Hintersberger, E., Irmak, T.S., and Baris, S., 2013, Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion. Tectonophysics, 608, 980–995.

    Google Scholar 

  • Köseoğlu, A., Özel, N.M., Bariş, Ş., Üçer, S.B., and Ottemöller, L., 2014, Spectral determination of source parameters in the Marmara Region. Journal of Seismology, 18, 651–669.

    Google Scholar 

  • Kumar, A., Mitra, S., and Suresh, G., 2015, Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary systems. Tectonics, 34, 2279–2295.

    Google Scholar 

  • Kumar, A., Kumar, A., Mittal, H., Kumar, A., and Bhardwaj, R., 2012, Software to estimate earthquake spectral and source parameters. International Journal of Geosciences, 3, 1142–1149.

    Google Scholar 

  • Kumar, A., Kumar, A., Gupta, S.C., Jindal, A.K., and Ghangas, V., 2014, Seismicity and source parameters of local earthquakes in Bilaspur region of Himachal Lesser Himalaya. Arabian Journal of Geosciences, 7, 2257–2267.

    Google Scholar 

  • Kurtuluş, C. and Canbay, M.M., 2007, Tracing the middle strand of the North Anatolian Fault Zone through the southern Sea of Marmara based on seismic reflection studies. Geo-Marine Letters, 27, 27–40.

    Google Scholar 

  • Le Pichon, X., Chamot-Rooke, N., Rangin, C., and Şengör, A.M.C., 2003, The North Anatolian fault in the sea of Marmara. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2002JB001862

  • Le Pichon, X., Şengör, A.M.C., Demirbağ, E., Rangin, C., Imren, C., Armijo, R., Görür, N., Çağatay, N., Mercier de Lepinay, B., Meyer, B., Saatçılar, R., and Tok, B., 2001, The active Main Marmara Fault. Earth and Planetary Science Letters, 192, 595–616.

    Google Scholar 

  • McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., and Kastens, K., 2000, Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105, 5695–5719.

    Google Scholar 

  • Nalbant, S.S., Hubert, A., and King, G.C., 1998, Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea. Journal of Geophysical Research: Solid Earth, 103, 24469–24486.

    Google Scholar 

  • Okay, A.İ., Kaşlılar-Özcan, A., Imren, C., Boztepe-Güney, A., Demirbağ, E., and Kuşçu, I., 2000, Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321, 189–218.

    Google Scholar 

  • Oth, A., Bindi, D., Parolai, S., and Di Giacomo, D., 2010, Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: insights from KiK-net data in Japan. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL044572

    Google Scholar 

  • Oye, V., Bungum, H., and Roth, M., 2005, Source parameters and scaling relations for mining-related seismicity within the Pyhasalmi ore mine, Finland. Bulletin of the Seismological Society of America, 95, 1011–1026.

    Google Scholar 

  • Parolai, S., Bindi, D., Durukal, E., Grosser, H., and Milkereit, C., 2007, Source parameters and seismic moment-magnitude scaling for Northwestern Turkey. Bulletin of the Seismological Society of America, 97, 655–660.

    Google Scholar 

  • Prieto, G.A., Shearer, P.M., Vernon, F.L., and Kilb, D., 2004, Earthquake source scaling and self-similarity estimation from stacking P and S spectra. Journal of Geophysical Research: Solid Earth, 109. https://doi.org/10.1029/2004JB003084

  • Reilinger, R.E., Ergintav, S., Bürgmann, R., McClusky, S., Lenk, O., Barka, A., Gurkan, O., Hearn, L., Feigl, K.L., Cakmak, R., and Aktug, B., 2000, Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey Earthquake. Science, 289, 1519–1524.

    Google Scholar 

  • Sato, T., Kasahara, J., Taymaz, T., Ito, M., Kamimura, A., Hayakawa, T., and Tan, O., 2004, A study of microearthquake seismicity and focal mechanisms within the Sea of Marmara (NW Turkey) using ocean bottom seismometers (OBSs). Tectonophysics, 391, 303–314. https://doi.org/10.1016/j.tecto.2004.07.018

    Google Scholar 

  • Scordilis, E.M., 2006, Empirical global relations converting MS and mb to moment magnitude. Journal of seismology, 10, 225–236.

    Google Scholar 

  • Sivaram, K., Kumar, D., Teotia, S.S., Rai, S.S., and Prakasam, K.S., 2013, Source parameters and scaling relations for small earthquakes in Kumaon Himalaya, India. Journal of Seismology, 17, 579–592.

    Google Scholar 

  • Smith, A.D., Taymaz, T., Oktay, F., Yuce, H., Alpar, B., Basaran, H., Jackson, J.A., Kara, S., and Simsek, M., 1995, High-resolution seismic profiling in the Sea of Marmara (northwest Turkey): Late Quaternary sedimentation and sea-level changes. Geological Society of America Bulletin, 107, 923–936.

    Google Scholar 

  • Stein, R.S., Barka, A., and Dieterich, J.H., 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.

    Google Scholar 

  • Süle, B. and Wéber, Z., 2013, Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin). Journal of Seismology, 17, 507–521.

    Google Scholar 

  • Taymaz, T., Jackson, J., and McKenzie, D., 1991, Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106, 433–490.

    Google Scholar 

  • Toksöz, M.N., Shakal, A.F., and Michael, A.J., 1979, Space-time migration of earthquakes along the North Anatolian fault zone and seismic gaps. Pure and Applied Geophysics, 117, 1258–1270.

    Google Scholar 

  • Tunc, B., Caka, D., Irmak, T.S., Woith, H., Tunc, S., Baris, S., Ozer, M.F., Lühr, B.G., Günther, E., Grosser, H., and Zschau, J., 2011, The Armutlu Network: an investigation into the seismotectonic setting of Armutlu-Yalova-Gemlik and the surrounding regions. Annals of Geophysics, 54, 35–45. https://doi.org/10.4401/ag-4877

    Google Scholar 

  • Tusa, G. and Gresta, S., 2008, Frequency-dependent attenuation of P waves and estimation of earthquake source parameters in southeastern Sicily, Italy. Bulletin of the Seismological Society of America, 98, 2772–2794.

    Google Scholar 

  • Uhrhammer, R.A. and Collins, E.R., 1990, Synthesis of Wood-Anderson seismograms from broadband digital records. Bulletin of the Seismological Society of America, 80, 702–716.

    Google Scholar 

  • Uhrhammer, R.A., Loper, S.J., and Romanowicz, B., 1996, Determination of local magnitude using BDSN broadband records. Bulletin of the Seismological Society of America, 86, 1314–1330.

    Google Scholar 

  • Wu, Q. and Chapman, M., 2017, Stress-drop estimates and source scaling of the 2011 Mineral, Virginia, mainshock and aftershocks. Bulletin of the Seismological Society of America, 107, 2703–2720.

    Google Scholar 

  • Wu, Q., Chapman, M., and Chen, X., 2018, Stress-drop variations of induced earthquakes in Oklahoma. Bulletin of the Seismological Society of America, 108, 1107–1123.

    Google Scholar 

  • Zobin, V.M. and Havskov, J., 1995, Source spectral properties of small earthquakes in the northern North Sea. Tectonophysics, 248, 207–218.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thanks two anonymous reviewers for their helpful comments that improved the manuscripts. The authors would like to thank the KOERI-NEMC staff to provide waveform data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Serkan Irmak.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irmak, T.S., Yavuz, E., Livaoğlu, H. et al. Source parameters for small-moderate earthquakes in Marmara Region (Turkey). Geosci J 24, 541–555 (2020). https://doi.org/10.1007/s12303-019-0039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-019-0039-2

Key words

Navigation