Skip to main content
Log in

Anderson localization for multi-frequency quasi-periodic operators on \(\pmb {\mathbb {Z}}^{d}\)

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We establish Anderson localization for general analytic k-frequency quasi-periodic operators on \({\mathbb {Z}}^d\) for arbitrarykd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. As in Remark 1, the non-degenracy condition on v leads to additional non-degeneracy conditions on f if the number of free variables in a certain row of the submanifold is bounded by 1. In particular, for A restricted to \(diag(\omega _1,\ldots ,\omega _d),\) as in [Bou07], the required non-degeneracy condition is exactly as in [Bou07].

  2. See e.g. the proof of Theorem 4.3.

References

  • A. Avila. Global theory of one-frequency Schrödinger operators. Acta Math., (1) 215 (2015), 1–54.

    MathSciNet  MATH  Google Scholar 

  • A. Avila, J. You, and Q. Zhou. Sharp phase transitions for the almost Mathieu operator. Duke Math. J., (14) 166 (2017), 2697–2718.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain. Estimates on Green’s functions, localization and the quantum kicked rotor model. Ann. of Math. (2), (1) 156 (2002), 249–294.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, (2005).

  • J. Bourgain. Anderson localization for quasi-periodic lattice Schrödinger operators on \({\mathbb{Z}}^d\), \(d\) arbitrary. Geom. Funct. Anal., (3) 17 (2007), 682–706.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain and M. Goldstein. On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2), (3) 152 (2000), 835–879.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain, M. Goldstein, and W. Schlag. Anderson localization for Schrödinger operators on \({\bf Z}^2\) with quasi-periodic potential. Acta Math., (1) 188 (2002), 41–86.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain and S. Jitomirskaya. Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math., (3) 148 (2002), 453–463.

    MathSciNet  MATH  Google Scholar 

  • J. Bourgain, S. Jitomirskaya, and L. Parnovski. Absolutely continuous spectrum for multidimensional quasiperiodic operators. In preparation.

  • J. Bourgain and I. Kachkovskiy. Anderson localization for two interacting quasiperiodic particles. Geom. Funct. Anal., (1) 29 (2019), 3–43.

    MathSciNet  MATH  Google Scholar 

  • V.A. Chulaevsky and E.I. Dinaburg. Methods of KAM-theory for long-range quasi-periodic operators on \({\bf Z}^\nu \). Pure point spectrum. Comm. Math. Phys., (3) 153 (1993), 559–577.

    MathSciNet  Google Scholar 

  • J. Fröhlich and T. Spencer. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys., (2) 88 (1983), 151–184.

    MathSciNet  MATH  Google Scholar 

  • L. Ge, J. You, and Q. Zhou. Exponential dynamical localization: Criterion and applications. arXiv preprint arXiv:1901.04258, (2019).

  • M. Goldstein and W. Schlag. Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal., (3) 18 (2008),755–869.

    MathSciNet  MATH  Google Scholar 

  • S. Jitomirskaya. Anderson localization for the almost Mathieu equation: a nonperturbative proof. Comm. Math. Phys., (1) 165 (1994), 49–57.

    MathSciNet  MATH  Google Scholar 

  • S. Jitomirskaya. Metal-insulator transition for the almost Mathieu operator. Ann. of Math. (2), (3) 150 (1999), 1159–1175.

    MathSciNet  MATH  Google Scholar 

  • S. Jitomirskaya and I. Kachkovskiy. \(L^2\)-reducibility and localization for quasiperiodic operators. Math. Res. Lett., (2) 23 (2016), 431–444.

    MathSciNet  MATH  Google Scholar 

  • S. Jitomirskaya and W. Liu. Universal hierarchical structure of quasiperiodic eigenfunctions. Ann. of Math. (2), (3) 187 (2018), 721–776.

    MathSciNet  MATH  Google Scholar 

  • S. Jitomirskaya and W. Liu. Universal reflective-hierarchical structure of quasiperiodic eigenfunctions and sharp spectral transition in phase. arXiv preprint arXiv:1802.00781, (2018).

  • S. Jitomirskaya and S. Zhang. Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators. arXiv preprint arXiv:1510.07086, (2015).

  • C.A. Marx and S. Jitomirskaya. Dynamics and spectral theory of quasi-periodic Schrödinger-type operators. Ergodic Theory Dynam. Systems, (8) 37 (2017), 2353–2393.

    MathSciNet  MATH  Google Scholar 

  • D. H. Phong, E.M. Stein, and J.A. Sturm. On the growth and stability of real-analytic functions. Amer. J. Math., (3) 121 (1999), 519–554.

    MathSciNet  MATH  Google Scholar 

  • J. You. Quantitative almost reducibility and its applications. In International Congress of Mathematicians, Rio de Janeiro, page 1916, (2018).

Download references

Acknowledgements

We are grateful to Jean Bourgain for his encouragement. This research was supported by NSF DMS-1401204, DMS-1901462, DMS-1700314/DMS-2015683 and NSFC Grant (11901010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In the following, we will prove the several variables matrix-valued Cartan estimate, i.e., Lemma 3.5. The proof is similar to that in [Bou05, Bou02]. Before going to the details, we recall some useful lemmas. The first result is the standard Schur’s complement theorem. For convenience, we include a proof here.

Lemma A.1

Let T be the matrix

$$\begin{aligned} T=\left( \begin{array}{cc} T_1&{}T_2\\ T_2^t&{}T_3 \end{array} \right) , \end{aligned}$$

where \(T_1\) is an invertible \(n\times n\) matrix , \(T_2\) is an \(n\times k\) matrix and \(T_3\) is a \(k\times k\) matrix. Let

$$\begin{aligned} S=T_3-T_2^tT_1^{-1} T_2. \end{aligned}$$

Then T is invertible if and only if S is invertible, and

$$\begin{aligned} \Vert S^{-1}\Vert \le \Vert T^{-1}\Vert \le C(1+\Vert T_1^{-1}\Vert )^2(1+\Vert S^{-1}\Vert ), \end{aligned}$$
(A.1)

where C depends only on \(\Vert T_2\Vert \).

Proof

It is easy to check that

$$\begin{aligned} T=\left( \begin{array}{cc} T_1&{}T_2\\ T_2^t&{}T_3 \end{array} \right) =\left( \begin{array}{cc} I&{}0\\ T_2^{t}T_1^{-1}&{}I \end{array} \right) \left( \begin{array}{cc} I&{}T_2\\ 0&{}S \end{array} \right) \left( \begin{array}{cc} T_1&{}0\\ 0&{}I \end{array} \right) . \end{aligned}$$
(A.2)

It implies T is invertible if and only if S is invertible and also the second inequality of (A.1). By (A.2), one has

$$\begin{aligned} T^{-1}= & {} \left( \begin{array}{cc} T_1&{}0\\ 0&{}I \end{array} \right) ^{-1}\left( \begin{array}{cc} I&{} T_2 \\ 0&{} S \end{array} \right) ^{-1} \left( \begin{array}{cc} I&{}0\\ T_2^{t}T_1^{-1}&{}I \end{array} \right) ^{-1}\\= & {} \left( \begin{array}{cc} T_1^{-1}&{}0\\ 0&{}I \end{array} \right) \left( \begin{array}{cc} I&{}-T_2S^{-1}\\ 0&{} S^{-1} \end{array} \right) \left( \begin{array}{cc} I&{}0\\ -T_2^{t}T_1^{-1}&{}I \end{array} \right) \\= & {} \left( \begin{array}{cc} \star &{}\star \\ \star &{} S^{-1} \end{array} \right) . \end{aligned}$$

implying the first inequality of (A.1). \(\square \)

We then introduce the higher dimensional Cartan sets Lemma of Goldstein-Schlag [GS08]. We denote by \({\mathcal {D}}(z,r)\) the standard disk on \({\mathbb {C}}\) of center z and radius \(r>0\).

Lemma A.2

[GS08, Lemma 2.15] Let \(f(z_1,\ldots ,z_J)\) be an analytic function defined in a ploydisk \({\mathcal {P}}=\prod \limits _{1\le i\le J}{\mathcal {D}}(z_{i,0},1/2)\) and \(\phi =\log |f|\). Let \(\sup \limits _{{\underline{z}}\in {\mathcal {P}}}\phi ({\underline{z}})\le M,m\le \phi ({\underline{z}}_0)\), \({\underline{z}}_0=(z_{1,0},\ldots ,z_{J,0})\). Given \(F\gg 1\), there exists a set \({\mathcal {B}}\subset {\mathcal {P}}\) such that

$$\begin{aligned} \phi ({\underline{z}})>M-C(J)F(M-m),\ \mathrm {for}\ \forall \ {\underline{z}}\in \prod \limits _{1\le i\le J}{\mathcal {D}}(z_{i,0},1/4)\setminus {\mathcal {B}}, \end{aligned}$$
(A.3)

and

$$\begin{aligned} \mathrm {mes}({\mathcal {B}}\cap {\mathbb {R}}^J)\le C(J)e^{-F^{1/J}}. \end{aligned}$$
(A.4)

Proof of Lemma 3.5

The proof is similar to that of Proposition 14.1 in [Bou05] in case \(J=1\) and Lemma 1.43 in [Bou02] without explicit bounds. In the following proof, \(C=C(B_1,J)\) and \(c=c(B_1,J)\).

Let

$$\begin{aligned} \mu =10^{-2}{J^{-1}}\delta (1+B_1)^{-1}(1+B_2)^{-1}. \end{aligned}$$

Fix

$$\begin{aligned} x_0\in \left[ -\delta /2, \delta /2\right] ^{J} \end{aligned}$$

and consider T(z) with \(|z-x_0|=\sup \limits _{1\le i\le J}|z_i-x_{0,i}|<\mu \). Thanks to Cauchy’s estimate and (3.12), one obtains for \(|z-x_0|<\mu \),

$$\begin{aligned} \Vert {\partial _{z_i} T(z)}\Vert \le \frac{4 B_1}{\delta },\quad i=1,2,\ldots , J, \end{aligned}$$

which implies

$$\begin{aligned} \Vert T(z)-T(x_0)\Vert \le \frac{4JB_1\mu }{\delta }\le 25^{-1}(1+B_2)^{-1}. \end{aligned}$$

From the assumption (ii) of Lemma 3.5, we can find \(V=V(x_0)\) so that \(|V|\le M\) and (3.13) is satisfied. Denote by \(V^c=[1,N]\setminus V\). Thus using the standard Neumann series argument and (3.13), one has

$$\begin{aligned} \Vert (R_{V^c}T(z)R_{V^c})^{-1}\Vert \le 2B_2\ \mathrm {for}\ |z-x_0|<\mu .\end{aligned}$$
(A.5)

We define for \(|z-x_0|<\mu \) the analytic self-adjoint function

$$\begin{aligned} S(z)=R_{V}T(z)R_{V}-R_{V}T(z)R_{V^c}(R_{V^c}T(z)R_{V^c})^{-1}R_{V^c}T(z)R_{V}. \end{aligned}$$
(A.6)

Then by (A.5) and (A.6), we have

$$\begin{aligned} \Vert S(z)\Vert \le 3B_1^2B_2. \end{aligned}$$
(A.7)

Recalling Lemma A.1, if S(z) is invertible, so is T(z) and by (A.1),

$$\begin{aligned} \Vert S^{-1}(z)\Vert \le C\Vert T^{-1}(z)\Vert \le CB_2^2(1+\Vert S^{-1}(z)\Vert ). \end{aligned}$$
(A.8)

For \(x\in {\mathbb {R}}^{J}\), one has

$$\begin{aligned} ||S(x)||^M\ge |\det S(x)|=\prod _{\lambda \in \sigma (S(x))}|\lambda |\ge \Vert S^{-1}(x)\Vert ^{-M}. \end{aligned}$$
(A.9)

By (A.7), one has

$$\begin{aligned} \Vert S^{-1}(x)\Vert \le \frac{\Vert S(x)\Vert ^{M-1}}{|\det S(x)|}\le \frac{(3B_1^2B_2)^M}{|\det S(x)|}. \end{aligned}$$
(A.10)

Let

$$\begin{aligned} \phi (z)=\log |\det S(x_0+\mu z)|,\ |z|<1. \end{aligned}$$

Then by (A.9) and (A.7),

$$\begin{aligned} \sup _{|z|<1}\phi (z)\le C M\log B_2. \end{aligned}$$
(A.11)

By (3.14) and the definition of \(\mu \), there is some \(x_1\) with \(|x_0-x_1|<\mu /10\) such that

$$\begin{aligned} \Vert T^{-1}(x_1)\Vert \le B_3. \end{aligned}$$
(A.12)

Hence by (A.8), \(\Vert S^{-1}(x_1)\Vert \le CB_3\), and from (A.9),

$$\begin{aligned} \phi (a)\ge -CM\log B_3, \end{aligned}$$
(A.13)

where \(a=\frac{x_1-x_0}{\mu }\), so \( |a|<1/10\). Let

$$\begin{aligned} {\mathcal {P}}=\prod _{1\le i\le J}{\mathcal {D}}(a_i,{1}/{2}). \end{aligned}$$

Then one has

$$\begin{aligned} \sup _{z\in {\mathcal {P}}}\phi (z)\le C M\log B_2, \phi (a)\ge - CM\log B_3. \end{aligned}$$

Applying Lemma A.2 and recalling (A.3), (A.4), for any \(F\gg 1\), there is some set \({\mathcal {B}}\subset \prod \limits _{1\le i\le J}{\mathcal {D}}(a_i,{1}/{4})\) with

$$\begin{aligned} \phi (z)\ge -CF M\log (B_2+B_3)\ \mathrm {for}\ z\in \prod \limits _{1\le i\le J}{\mathcal {D}}(a_i,{1}/{4})\setminus {\mathcal {B}}, \end{aligned}$$
(A.14)

and

$$\begin{aligned} \mathrm {mes}({\mathcal {B}}\cap {\mathbb {R}}^{J})\le Ce^{-F^{1/J}}. \end{aligned}$$
(A.15)

For \(0<\epsilon <1\), let

$$\begin{aligned} F =\frac{-c\log \epsilon }{ M\log (B_2+B_3)}. \end{aligned}$$

Then by (A.14) and (A.15),

$$\begin{aligned}&\mathrm {mes}\left\{ x\in {\mathbb {R}}^{J}: \ |x-x_1|<\mu /4\ \mathrm {and}\ |\det S(x)|\le \epsilon \right\} \\&\quad = \mu ^{{J}}\mathrm {mes}\left\{ x\in {\mathbb {R}}^{J}:\ |x-a|<1/4\ \mathrm {and}\ \phi (x)\le \log \epsilon \right\} \\&\quad \le C\mu ^{{J}} e^{-F^{1/J}}. \end{aligned}$$

Since \(|x_0-x_1|<\mu /10\), we have

$$\begin{aligned} \mathrm {mes}\left\{ x\in {\mathbb {R}}^{J}:\ |x-x_0|<\mu /8\ \mathrm {and}\ |\det (S(x))|\le \epsilon \right\} \le C \mu ^{{J}} e^{-c\left( \frac{\log \epsilon ^{-1}}{M\log (B_2+B_3)}\right) ^{1/J}}.\nonumber \\ \end{aligned}$$
(A.16)

Recalling (A.8), (A.10) and (3.15), one has for \(|x-x_0|<\mu /8\) and \(|\det S(x)|\ge \epsilon \),

$$\begin{aligned} \Vert T^{-1}(x)\Vert \le C(1+B_2^2)(1+\epsilon ^{-1}(3B_1^2{B_2})^M)\le C\epsilon ^{-2}. \end{aligned}$$
(A.17)

Covering \([-\frac{\delta }{2},\frac{\delta }{2}]^{J}\) by cubes of side \(\mu /4\), and combining (A.16) and (A.17), one has

$$\begin{aligned} \mathrm {mes}\left\{ x\in \left[ -\delta /2, \delta /2\right] ^{J}:\ \Vert T^{-1}(x)\Vert \ge \epsilon ^{-2}\right\} \le C\delta ^{J}e^{-c\left( \frac{\log \epsilon ^{-1}}{M\log (B_2+B_3)}\right) ^{1/J}}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jitomirskaya, S., Liu, W. & Shi, Y. Anderson localization for multi-frequency quasi-periodic operators on \(\pmb {\mathbb {Z}}^{d}\). Geom. Funct. Anal. 30, 457–481 (2020). https://doi.org/10.1007/s00039-020-00530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-020-00530-8

Keywords

Navigation