Skip to main content
Log in

On the Yang–Yau inequality for the first Laplace eigenvalue

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In a seminal paper published in 1980, P. C. Yang and S.-T. Yau proved an inequality bounding the first eigenvalue of the Laplacian on an orientable Riemannian surface in terms of its genus \(\gamma \) and the area. The equality in Yang–Yau’s estimate is attained for \(\gamma =0\) by an old result of J. Hersch and it was recently shown by S. Nayatani and T. Shoda that it is also attained for \(\gamma =2\). In the present article we combine techniques from algebraic geometry and minimal surface theory to show that Yang–Yau’s inequality is strict for all genera \(\gamma >2\). Previously this was only known for \(\gamma =1\). In the second part of the paper we apply Chern-Wolfson’s notion of harmonic sequence to obtain an upper bound on the total branching order of harmonic maps from surfaces to spheres. Applications of these results to extremal metrics for eigenvalues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Ammann. The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions. Comm. Anal. Geom., (3)17 (2009), 429–479

    Article  MathSciNet  Google Scholar 

  2. E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris. Geometry of algebraic curves. Vol. I. Volume 267 of Grundlehren der Mathemaischen Wissenschaften (Fundamental Principles of Mathematical Sciences), (1985).

  3. E. Arbarello, M. Cornalba and P.A. Griffiths. Geometry of Algebraic Curves: Volume II with a Contribution by Joseph Daniel Harris., Vol. 268. Springer, Berlin (2011).

    Book  Google Scholar 

  4. S. Bando and H. Urakawa. Generic properties of the eigenvalue of Laplacian for compact Riemannian manifolds. Tôhoku Math. J., (2)35 (1983), 155–172

    Article  MathSciNet  Google Scholar 

  5. J. Barbosa. On minimal immersions of \(S^{2}\) into \(S^{2m}\). Trans. Amer. Math. Soc., 210 (1975), 75–106

    MathSciNet  MATH  Google Scholar 

  6. M. Berger. Sur les premières valeurs propres des varétés Riemanniennes. Compositio Math., 26 (1973), 129–149

    MathSciNet  MATH  Google Scholar 

  7. J. Bolton, G.R. Jensen, M. Rigoli and L.W. Woodward. On conformal minimal immersions of \(\mathbb{S}^2\) into \({\mathbb{CP}}^n\). Mathematische Annalen, (4)279 (1988), 599–620

    Article  MathSciNet  Google Scholar 

  8. B. Colbois and A. El Soufi. Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ’conformal spectrum’. Ann. Global Anal. Geom., (4)24 (2003), 337–349

    Article  MathSciNet  Google Scholar 

  9. S.S. Chern and J. Wolfson. Harmonic maps of \(\mathbb{S}^2\) into a complex Grassmann manifold. Proceedings of the National Academy of Sciences, (8)82 (1985), 2217–2219

    Article  MathSciNet  Google Scholar 

  10. S.S. Chern and J.G. Wolfson. Harmonic maps of the two-sphere into a complex Grassmann manifold II. Annals of Mathematics, (2)125 (1987), 301–335

    Article  MathSciNet  Google Scholar 

  11. D. Cianci, M. Karpukhin and V. Medvedev. On branched minimal immersions of surfaces by first eigenfunctions. To appear in Annals of Global Analysis and Geometry. Published online at https://doi.org/10.1007/s10455-019-09683-8. Preprint arXiv:1711.05916.

    Article  MathSciNet  Google Scholar 

  12. M. Coppens. Five-gonal curves of genus nine. Collectanea Mathematica, (1)56 (2005), 21–26

    MathSciNet  MATH  Google Scholar 

  13. M. Coppens. One-dimensional linear systems of type II on smooth curves. Ph.D. Thesis, Utrecht, (1983).

  14. A. El Soufi and S. Ilias. Immersions minimales, première valeur propre du Laplacien et volume conforme. Mathematische Annalen, (2)275 (1986), 257–267

    Article  MathSciNet  Google Scholar 

  15. A. El Soufi and S. Ilias. Laplacian eigenvalues functionals and metric deformations on compact manifolds. J. Geom. Phys. (1)58 (2008), 89–104

    Article  MathSciNet  Google Scholar 

  16. A. El Soufi and S. Ilias. Le volume conforme et ses applications d’après Li et Yau, Sém. Théorie Spectrale et Géométrie, Institut Fourier, No. VII. (1984), pp. 1983–1984.

  17. J. Eschenburg and R. Tribuzy. Branch points of conformal mappings of surfaces. Mathematische Annalen, 279 (1988), 621–633

    Article  MathSciNet  Google Scholar 

  18. P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley, New York (1978).

    MATH  Google Scholar 

  19. R. Hartshorne. Algebraic geometry, Vol. 52. Springer, Berlin (2013).

    MATH  Google Scholar 

  20. A. Hassannezhad. Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. Journal of Functional Analysis, (12)261 (2011), 3419–3436

    Article  MathSciNet  Google Scholar 

  21. J. Hersch. Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér A-B 270 (1970), A1645–A1648

    MATH  Google Scholar 

  22. D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam and I. Polterovich. How large can the first eigenvalue be on a surface of genus two? Int. Math. Research Notices, 63 (2005), 3967–3985

    Article  MathSciNet  Google Scholar 

  23. M. Karpukhin. Upper bounds for the first eigenvalue of the Laplacian on non-orientable surfaces. Int. Math. Research Notices, 20 (2016), 6200–6209

    Article  MathSciNet  Google Scholar 

  24. M. Karpukhin. Index of minimal spheres and isoperimetric eigenvalue inequalities. Preprint arXiv:1905.03174.

  25. M. Karpukhin, N. Nadirashvili, A. Penskoi and I. Polterovich. An isoperimetric inequality for Laplace eigenvalues on the sphere. Preprint arXiv:1706.05713.

  26. S.L. Kleiman. \(r\)-special subschemes and an argument of Severi’s. With an appendix by D. Laksov. Advances in Mathematics, (1)22 (1976), 1–31

    Article  MathSciNet  Google Scholar 

  27. N. Korevaar. Upper bounds for eigenvalues of conformal metrics. J. Differential Geom. (1)37 (1993), 79–93

    Article  MathSciNet  Google Scholar 

  28. R. Kusner. Comparison surfaces for the Willmore problem. Pacific J. of Math. (2)138 (1989), 317–345

    Article  MathSciNet  Google Scholar 

  29. P. Li and S.-T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Inventiones mathematicae, (2)69 (1982), 269–291

    Article  MathSciNet  Google Scholar 

  30. H. Matthiesen. On some variational problems in geometry, Doctoral dissertation, Universitäts-und Landesbibliothek Bonn, (2018).

  31. S. Montiel and A. Ros. Schrödinger operators associated to a holomorphic map. In: Global differential geometry and global analysis. Springer, Berlin, pp. 147–174.

    Chapter  Google Scholar 

  32. N. Nadirashvili. Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal, (5)6 (1996), 877–897

    Article  MathSciNet  Google Scholar 

  33. N.S. Nadirashvili. Multiple eigenvalues of the Laplace operator. Sbornik: Mathematics, (1)61 (1988), 225–238

    Article  MathSciNet  Google Scholar 

  34. N.S. Nadirashvili and A.V. Penskoi. An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane. Geometric and Functional Analysis, (5)28 (2018), 1368–1393

    Article  MathSciNet  Google Scholar 

  35. S. Nayatani and T. Shoda. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian. Comptes Rendus Mathematique, (1)357 (2019), 84–98

    Article  MathSciNet  Google Scholar 

  36. R. Osserman. A Survey of minimal surfaces. Dover Publications, Inc., Mineola, New York, (1986).

    MATH  Google Scholar 

  37. R. Petrides. Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geometric and Functional Analysis, (4)24 (2014), 1336–1376

    Article  MathSciNet  Google Scholar 

  38. R. Petrides. On the existence of metrics which maximize Laplace eigenvalues on surfaces. Int. Math. Research Notices, 14 (2018), 4261–4355

    Article  MathSciNet  Google Scholar 

  39. A. Ros. One-sided complete stable minimal surfaces. J. Differential Geom. 74 (2006), 69–92

    Article  MathSciNet  Google Scholar 

  40. P.C. Yang and S.-T. Yau. Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1)7 (1980), 55–63

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to V. Baranovsky, M. Coppens, A. Neves, I. Polterovich and R. Schoen for fruitful discussions. A special thanks goes to M. Coppens for providing the author with a copy of his thesis [Cop83]. The author thanks V. Medvedev and I. Polterovich for remarks on the preliminary version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Karpukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpukhin, M. On the Yang–Yau inequality for the first Laplace eigenvalue. Geom. Funct. Anal. 29, 1864–1885 (2019). https://doi.org/10.1007/s00039-019-00518-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00518-z

Navigation