Skip to main content
Log in

Pointwise lower scalar curvature bounds for \(C^0\) metrics via regularizing Ricci flow

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we propose a class of local definitions of weak lower scalar curvature bounds that is well defined for \(C^0\) metrics. We show the following: that our definitions are stable under greater-than-second-order perturbation of the metric, that there exists a reasonable notion of a Ricci flow starting from \(C^0\) initial data which is smooth for positive times, and that the weak lower scalar curvature bounds are preserved under evolution by the Ricci flow from \(C^0\) initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Bamler. Stability of hyperbolic manifolds with cusps under Ricci flow. Advances in Mathematics 263 (2014), 412 –467. MR3239144.

    Article  MathSciNet  Google Scholar 

  2. R.H. Bamler. A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature. Mathematical Research Letters (2)23 (2016), 325 –337. MR3512888.

    Article  MathSciNet  Google Scholar 

  3. R.H. Bamler and B. Kleiner. Uniqueness and stability of Ricci flow through singularities (2018). arXiv:1709.04122

  4. R.H. Bamler. Stability of Einstein metrics of negative curvature. Ph.D. Thesis (2011).

  5. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni. The Ricci low: techniques and applications. Part III : Geometric-analytic aspects. Mathematical Surveys and Monographs, vol. 163, American Mathematical Society, Providence (2010). MR2604955.

  6. D.M. DeTurck. Deforming metrics in the direction of their Ricci tensors. The Journal of Differential Geometry (1)18 (1983), 157–162. MR0697987.

    Article  MathSciNet  Google Scholar 

  7. M. Gromov and H. Blaine Lawson, Jr. Spin and scalar curvature in the presence of a fundamental group. I. Annals of Mathematics. (2). (2)111 (1980), 209–230. MR0569070.

    Article  MathSciNet  Google Scholar 

  8. M. Gromov, Dirac and Plateau billiards in domains with corners. Central European Journal of Mathematics (8)12 (2014), 1109–1156. MR3201312.

    MathSciNet  MATH  Google Scholar 

  9. H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics (1977), 509–541. MR0442975.

    Article  MathSciNet  Google Scholar 

  10. H. Koch and T. Lamm. Geometric flows with rough initial data. Asian Journal of Mathematics 16 (2012), 209–236. MR2916362.

    Article  MathSciNet  Google Scholar 

  11. H. Koch and T. Lamm. Parabolic equations with rough data. Mathematica Bohemica (4)140 (2015), 457–477. MR3432546.

    MathSciNet  MATH  Google Scholar 

  12. N.V. Krylov. Lectures on elliptic and parabolic equations in Hölder spaces. Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence (1996). MR1406091.

  13. N.V. Krylov. Lectures on elliptic and parabolic equations in Sobolev spaces. Graduate Studies in Mathematics, vol. 96, American Mathematical Society, Providence (2008). MR2435520.

  14. R. Schoen and S.T. Yau. On the structure of manifolds with positive scalar curvature. Manuscripta Math. (1-3)28 (1979), 159–183.

    Article  MathSciNet  Google Scholar 

  15. M. Simon. Deformation of \(C^{0}\) Riemannian metrics in the direction of their Ricci curvature. Communications in Analysis and Geometry (5)10 (2002), 1033–1074.

    Article  MathSciNet  Google Scholar 

  16. C.D. Sogge. Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, (2017). MR3645429.

  17. P. Topping. Lectures on the Ricci Flow, London Mathematical Society Lecture Note Series, vol. 325, Cambridge University Press, Cambridge (2006). MR2265040.

Download references

Acknowledgements

I would like to thank my advisor, Richard Bamler, for introducing me to this project, and for his help and encouragement. I would also like to thank Christina Sormani, for posing the problem of torus rigidity for Definition 1.2 to me, and for showing relevant references to me. Finally, I would like to thank Chao Li, for showing the work of Simon [Sim02] to me, and for many helpful comments on a previous version of this paper. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1752814. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Burkhardt-Guim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Iteration Scheme for the Ricci–DeTurck Flow

Iteration Scheme for the Ricci–DeTurck Flow

The aim of this section is essentially to show that closeness of two metrics is stable under the Ricci–DeTurck flow, by appealing to the Banach fixed point theorem. We first record the unweighted versions of several results that we have proven in Section 4; see also [KL12, Lemmata 2.2, 4.1, and 4.2].

Lemma A.1

We have, for every \(0<\gamma < 1\) and every two \(h', h''\in X^{\gamma }\),

$$\begin{aligned} ||Q^0[h'] - Q^0[h''] + \nabla ^*Q^1[h']- \nabla ^*Q^1[h'']||_{Y} \le c_1(||h'||_X + ||h''||_X)||h' - h''||_X, \end{aligned}$$
(A.1)

where \(c_1 = c_1(n,\gamma , T\sup _{t\in [0,T]}|{\text {Rm}}|(\bar{g}_t))\). Moreover, if \((\partial _t + L)h\equiv 0\) with initial condition \(h_0\in L^\infty (M)\), then

$$\begin{aligned} ||h||_X \le c_2||h_0||_{L^\infty (M)}, \end{aligned}$$
(A.2)

where \(c_2\) is the constant from Lemma 4.5. Finally, if \((\partial _t + L)h = Q\in Y\) and \(h_0 \equiv 0\), then

$$\begin{aligned} ||h||_X \le c_3||Q||_Y, \end{aligned}$$
(A.3)

where \(c_3\) is the constant from Lemma 4.6.

Proof

The proofs of (A.2) and (A.3) follow similarly to the proofs of Lemmata 4.5 and 4.6, by omitting the weights. The proof of (A.1) is similar to the analysis of Terms I and II in the proof of Theorem 4.1 but we shall give more details here. The analysis is simplified by the fact that \(h'\) and \(h''\) are solutions with respect to the same background metric. First observe that if \(||h'||_X, ||h''||_X< \gamma < 1\), then (2.14) and (2.16) imply

$$\begin{aligned}&|(\bar{g} + h')^{-1}\star (\bar{g} + h')^{-1} \\&\qquad - (\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1}| \le |(\bar{g} + h')^{-1}\star (\bar{g} + h')^{-1} - (\bar{g} + h')^{-1}\star (\bar{g} + h'')^{-1}|\\&\qquad + |(\bar{g} + h')^{-1}\star (\bar{g} + h'')^{-1} - (\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1}|\\&\quad \le |(\bar{g} + h')^{-1}||(\bar{g} + h')^{-1} - (\bar{g} + h'')^{-1}| + |(\bar{g} + h')^{-1} - (\bar{g} + h'')^{-1}||(\bar{g} + h'')^{-1}|\\&\quad \le |(\bar{g} + h')^{-1}|^2 |(\bar{g} + h'')^{-1}| |h' - h''| + |(\bar{g} + h'')^{-1}|^2 |(\bar{g} + h')^{-1}| |h' - h''|\\&\quad \le c(n,\gamma )|h' - h''|. \end{aligned}$$

Thus we have

$$\begin{aligned}&|Q^0[h'] - Q^0[h'']|\\&\quad \le |(\bar{g} + h')^{-1}\star (\bar{g} + h')^{-1} \star \nabla h' \star \nabla h' - (\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1} \star \nabla h'' \star \nabla h''|\\&\qquad + |[(\bar{g} + h')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h' - [(\bar{g} + h'')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h'' \star h''|\\&\quad \le |(\bar{g} + h')^{-1}\star (\bar{g} + h')^{-1} \star \nabla h' \star \nabla h' - (\bar{g} + h')^{-1}\star (\bar{g} + h')^{-1} \star \nabla h' \star \nabla h''|\\&\qquad + |(\bar{g} + h')^{-1}*(\bar{g} + h')^{-1} \star \nabla h' \star \nabla h'' - (\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1} \star \nabla h' \star \nabla h''|\\&\qquad + |(\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1} \star \nabla h' \star \nabla h'' - (\bar{g} + h'')^{-1}\star (\bar{g} + h'')^{-1} \star \nabla h'' \star \nabla h''|\\&\qquad + |[(\bar{g} + h')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h' - [(\bar{g} + h')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h''|\\&\qquad +|[(\bar{g} + h')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h'' - [(\bar{g} + h'')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h''|\\&\qquad + |[(\bar{g} + h'')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h' \star h'' - [(\bar{g} + h'')^{-1} - \bar{g}]\star {\text {Rm}}^{\bar{g}}\star h'' \star h''|\\&\quad \le c(n, \gamma )|\nabla h'||\nabla (h' - h'')| + c(n)|h' - h''||\nabla h'||\nabla h''| + c(n,\gamma )|\nabla (h' - h'')||\nabla h''|\\&\qquad + c(n,\gamma )|{\text {Rm}}^{\bar{g}}||h'||h' - h''| + c(n)|h' - h''||{\text {Rm}}^{\bar{g}}||h'||h''| \\&\qquad + c(n,\gamma )|{\text {Rm}}^{\bar{g}}||h'-h''||h''|, \end{aligned}$$

appealing to (2.14). We also have

$$\begin{aligned} |Q^1[h'] - Q^1[h'']|&\le |[(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h' \star \nabla h' - [(\bar{g} + h'')^{-1} - \bar{g}^{-1}]\star h'' \star \nabla h''|\\&\le |[(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h' \star \nabla h' - [(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h' \star \nabla h''|\\&\quad + |[(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h' \star \nabla h'' - [(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h'' \star \nabla h''|\\&\quad + |[(\bar{g} + h')^{-1} - \bar{g}^{-1}]\star h'' \star \nabla h'' - [(\bar{g} + h'')^{-1} - \bar{g}^{-1}]\star h'' \star \nabla h''|\\&\le c(n,\gamma )|h'||\nabla (h' - h'')| + c(n,\gamma )|h' - h''||\nabla h''| \\&\quad + c(n,\gamma )|h''||\nabla h''||h' - h''|. \end{aligned}$$

Then the estimate (A.1) follows from the definitions of the X and Y norms, much as in the proof of Lemma 4.4. \(\square \)

Lemma A.2

Suppose \(\bar{g}(t)\) is a smooth Ricci flow background defined for \(t\in [0,T]\). Suppose \(g_0', g_0''\in L^{\infty }(M)\) are two initial metrics such that \(||g_0' - \bar{g}(0)||_{L^\infty (M)}, ||g_0''-\bar{g}(0)||_{L^\infty (M)} < \varepsilon \), where \(\varepsilon \) is given by Lemma 3.3 and reduced, if necessary, so that \(2c_1c_3C\varepsilon < 1\), where C is the constant from Lemma 3.3 and \(c_1\) and \(c_3\) are as in (A.1) and (A.3) respectively. Let \(h'(t)\) and \(h''(t)\) be solutions to the integral equation (3.1) in \(X^\gamma \) for some \(0<\gamma < 1\), given by Lemma 3.3, starting from \(g_0'\) and \(g_0''\) respectively. Then

$$\begin{aligned} ||h' - h''||_{X} \le c||g_0' - g_0''||_{L^\infty (M)}, \end{aligned}$$
(A.4)

where \(c = c(n, \gamma , T\sup _{[0,T]}|{\text {Rm}}|(\bar{g}_t))\).

Proof

Observe that \(||h'||_{X}, ||h''||_{X} \le C\varepsilon \), by Lemma 3.3. Moreover, the proof of Lemma 3.3 implies that \(F[\cdot , h_0']\) and \(F[\cdot , h_0'']\) are contraction mappings \(X^{C\varepsilon }\rightarrow X^{C\varepsilon }\). For \(i\in \mathbb {N}\) let \(h_i' = F^i[0, h_0']\), i.e. \(F[\cdot , h_0']\) applied to the 0-tensor i times, and let \(h_i'' = F^i[0,h_0'']\), so that \(h_i'\rightarrow h'\) in X as \(i\rightarrow \infty \), and similarly for \(h''\), by the Banach fixed point theorem. We show

$$\begin{aligned} ||h_i' - h_i''||_{X} \le c_2\sum _{k=0}^{i-1}(2c_1c_3C\varepsilon )^{k}||h_0' - h_0''||_{L^\infty (M)}. \end{aligned}$$
(A.5)

To prove (A.5) we induct. We have

$$\begin{aligned} ||h_1' - h_1''||_{X} = \left| \left| \int _M\bar{K}(x,y) (h_0' - h_0'')(y)dy\right| \right| _{X} \le c_2||h_0' - h_0''||_{L^\infty (M)}, \end{aligned}$$

by (A.2). Moreover, supposing (A.5) holds for \(i-1\), we appeal to (A.3), (A.2), and (A.1) to find

$$\begin{aligned} ||h_i' - h_i''||_X&\le ||F[h_{i-1}', h_0'] - F[h_{i-1}'', h_0']||_X + ||F[h_{i-1}'', h_0'] - F[h_{i-1}'', h_0'']||_X\\&= \left| \left| \int _0^t\int _M\bar{K}_{t-s}(x,y)(Q[h_{i-1}'] - Q[h_{i-1}''])(y,s)dyds\right| \right| _X \\&\quad + \left| \left| \int _M\bar{K}(x,y)(h_0' - h_0'')(y)dy\right| \right| _X\\&\le c_3||Q[h_{i-1}'] - Q[h_{i-1}'']||_Y + c_2||h_0' - h_0''||_{L^\infty (M)}\\&\le c_1c_3(||h_{i-1}'||_{X} + ||h_{i-1}''||_{X})||h_{i-1}' - h_{i-1}''||_X + c_2||h_0' - h_0''||_{L^\infty (M)}\\&\le 2c_1c_3C\varepsilon c_2\sum _{k=0}^{i-2}(2c_1c_3C\varepsilon )^{k}||h_0' - h_0''||_{L^\infty (M)} + c_2||h_0' - h_0''||_{L^\infty (M)} . \end{aligned}$$

Taking limits, we obtain (A.4), with \(c = c_2\sum _{k=0}^{\infty }(2c_1c_3C\varepsilon )^k\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhardt-Guim, P. Pointwise lower scalar curvature bounds for \(C^0\) metrics via regularizing Ricci flow. Geom. Funct. Anal. 29, 1703–1772 (2019). https://doi.org/10.1007/s00039-019-00514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00514-3

Navigation