Skip to main content
Log in

Planar Sampling Sets for the Short-Time Fourier Transform

  • Published:
Constructive Approximation Aims and scope

Abstract

This paper considers the problem of restricting the short-time Fourier transform to sets of nonzero measure in the plane. Thereby, we study under which conditions one has a sampling set and provide estimates of the corresponding sampling bound. In particular, we give a quantitative estimate for the lower sampling bound in the case of Hermite windows and derive a sufficient condition for a large class of windows in terms of a certain planar density. On the way, we prove a Remez-type inequality for polyanalytic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu, L.D., Balazs, P., de Gosson, M., Mouayn, Z.: Discrete coherent states for higher Landau levels. Ann. Phys. 363, 337–353 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abreu, L.D., Gröchenig, K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. 91, 1981–1997 (2012)

    Article  MathSciNet  Google Scholar 

  3. Abreu, L.D., Speckbacher, M.: A planar large sieve and sparsity of time-frequency representations. In: Proceedings of SampTA (2017)

  4. Abreu, L.D., Speckbacher, M.: Donoho–Logan large sieve principles for modulation and polyanalytic Fock spaces. arXiv:1808.02258 (2018)

  5. Ascensi, G.: Sampling measures for the Gabor transform. J. Approx. Theory 200, 40–67 (2015)

    Article  MathSciNet  Google Scholar 

  6. Balk, M.B.: Polyanalytic functions and their generalizations. Complex Analysis I. Encyclopaedia in Mathematical Sciences, vol. 85, pp. 197–253. Springer, Berlin (1997)

    Chapter  Google Scholar 

  7. Bayram, M., Baraniuk, R.G.: Multiple window time-varying spectrum estimation. In: Fitzgerald, W.J., et al. (eds.) Nonlinear and Nonstationary Signal Processing, pp. 292–316. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Beauchard, K., Jaming, P., Pravda-Starov, K.: Spectral inequality for Hermite functions and null-controllability of hypoelliptic quadratic equations. arXiv:1804.04895 (2018)

  9. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19, 23–55 (2003)

    Article  MathSciNet  Google Scholar 

  10. Brudnyi, A.: Local inequalities for plurisubharmonic functions. Ann. Math. 149, 511–533 (1999)

    Article  MathSciNet  Google Scholar 

  11. Christensen, O., Deng, B., Heil, C.: Density of Gabor frames. Appl. Comp. Harmon. Anal. 7, 292–304 (1999)

    Article  MathSciNet  Google Scholar 

  12. Daubechies, I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D.L., Logan, B.F.: Signal recovery and the large sieve. SIAM J. Appl. Math. 52(2), 577–591 (1992)

    Article  MathSciNet  Google Scholar 

  14. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University of Vienna, (1983)

  15. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MathSciNet  Google Scholar 

  16. Fernandéz, C., Galbis, A.: Annihilating sets for the short-time Fourier transform. Adv. Math. 224, 1904–1926 (2010)

    Article  MathSciNet  Google Scholar 

  17. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    Book  Google Scholar 

  18. Ghobber, S., Jaming, P.: The Logvinenko–Sereda theorem for the Fourier–Bessel transform. Integral Transforms Spec. Funct. 24(6), 470–484 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gröchenig, K.: Describing functions: atomic decomposition versus frames. Monatsh. Math. 112, 1–41 (1991)

    Article  MathSciNet  Google Scholar 

  20. Gröchenig, K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  21. Gröchenig, K.: Irregular sampling of wavelet and short-time Fourier transforms. Constr. Approx. 9, 283–297 (1993)

    Article  MathSciNet  Google Scholar 

  22. Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensemble. J. Stat. Phys. 153(1), 10–47 (2013)

    Article  MathSciNet  Google Scholar 

  23. Hartmann, A., Jaming, P., Kellay, K.: Quantitative estimates of sampling constants in model spaces. Am. J. Math. arXiv:1707.07880 (2017)

  24. Hrycak, T., Speckbacher, M.: Concentration estimates for band-limited spherical harmonics expansions via the large sieve principle. J. Fourier Anal. Appl. arXiv:1909.01670 (2019)

  25. Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Rev. Math. Iberoamericana 3(1), 61–138 (1987)

    Article  MathSciNet  Google Scholar 

  26. Kacnel’son, V.E.: Equivalent norms in spaces of entire functions. Mat. Sb. (N.S.), English Transl. Math. USSR Sb. 21, 33–53 (1973)

    Article  Google Scholar 

  27. Kovrijkine, O.: Some results related to the Logvinenko–Sereda theorem. Proc. Am. Math. Soc. 129(10), 3037–3047 (2001)

    Article  MathSciNet  Google Scholar 

  28. Krantz, S.G.: Function Theory of Several Complex Variables. Wiley, New York (1982)

    MATH  Google Scholar 

  29. Logvinenko, V.N., Sereda, Y.F.: Equivalent norms in spaces of entire functions of exponential type. Teor. Funktsii, Funktsional. Anal. i Prilozhen 19, 234–246 (1973)

    Google Scholar 

  30. Luecking, D.H.: Inequalities on Bergman spaces. Illinois J. Math. 25(1), 1–11 (1981)

    Article  MathSciNet  Google Scholar 

  31. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, Vol. I. Cambridge Studies in Advanced Mathematics, vol. 137. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  32. Ortega-Cerdá, J.: Sampling measures. Publ. Mat. 42, 559–566 (1998)

    Article  MathSciNet  Google Scholar 

  33. Ortega-Cerdá, J., Pridhnani, B.: Carleson measures and Logvinenko–Sereda sets on compact manifolds. Forum Math. 25(1), 151–172 (2013)

    Article  MathSciNet  Google Scholar 

  34. Panejah, B.P.: On some problem in harmonic analysis. Dokl. Akad. Nauk SSSR 142, 1026–1029 (1962)

    MathSciNet  Google Scholar 

  35. Panejah, B.P.: Some inequalities for functions of exponential type and a priori estimates for general differential operators. Russ. Math. Surv. 21, 75–114 (1966)

    Article  MathSciNet  Google Scholar 

  36. Ramanathan, J., Steger, T.: Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2(2), 148–153 (1995)

    Article  MathSciNet  Google Scholar 

  37. Reznikov, A.: Sharp constants in the Paneyah–Logvinenko–Sereda theorem. Comptes Rendus Mathematique 348(3), 141–144 (2010)

    Article  MathSciNet  Google Scholar 

  38. Seip, K.: Reproducing formulas and double orthogonality in Bargmann and Bergman spaces. SIAM J. Math. Anal. 22(3), 856–876 (1991)

    Article  MathSciNet  Google Scholar 

  39. Sun, W., Zhou, X.: Irregular Gabor frames and their stability. Proc. Am. Math. Soc. 131(9), 2883–2893 (2002)

    Article  MathSciNet  Google Scholar 

  40. Xiao, J., Flandrin, P.: Multitaper time–frequency reassignment for nonstationary spectrum estimation and chirp enhancement. IEEE Trans. Sign. Proc. 55(6), 2851–2860 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Speckbacher was supported by an Erwin–Schrödinger Fellowship (J-4254) of the Austrian Science Fund FWF. The authors are grateful to the anonymous referees for their constructive remarks that lead to an improvement of the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jaming.

Additional information

Communicated by Kristian Seip.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaming, P., Speckbacher, M. Planar Sampling Sets for the Short-Time Fourier Transform. Constr Approx 53, 479–502 (2021). https://doi.org/10.1007/s00365-020-09503-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09503-4

Keywords

Mathematics Subject Classification

Navigation