Skip to main content
Log in

Rhodonea Curves as Sampling Trajectories for Spectral Interpolation on the Unit Disk

  • Published:
Constructive Approximation Aims and scope

Abstract

Rhodonea curves are classical planar curves in the unit disk with the characteristic shape of a rose. In this work, we use these rose curves as sampling trajectories to create novel nodes for spectral interpolation on the disk. By generating the interpolation spaces with a parity-modified Chebyshev–Fourier basis, we will prove the unisolvence of the interpolation on the rhodonea nodes. Properties such as continuity, convergence, and numerical condition of the interpolation scheme depend on the spectral structure of the interpolation space. For rectangular spectral index sets, we show that the interpolant is continuous at the center, that the Lebesgue constant grows only logarithmically, and that the scheme converges fast if the interpolated function is smooth. Finally, we show that the scheme can be implemented efficiently using a fast Fourier method and that it can be applied to define a Clenshaw–Curtis quadrature on the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beylkin, G., Kurcz, C., Monzón, L.: Grids and transforms for band-limited functions in a disk. Inverse Probl. 23(5), 2059–2088 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143(1), 15–25 (2006)

    Article  MathSciNet  Google Scholar 

  3. Boyd, J.P.: The choice of spectral functions on a sphere for boundary and eigenvalue problem. A comparison of Chebyshev, Fourier and associated Legendre expansions. Mon. Weather Rev. 106, 1184–1191 (1978)

    Article  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications Inc., New York (2000)

    Google Scholar 

  5. Boyd, J.P., Yu, F.: Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge polynomials, Chebyshev–Fourier series, cylindrical Robert functions, Bessel–Fourier expansions, square-to-disk conformal mapping and radial basis functions. J. Comput. Phys. 230, 1408–1438 (2011)

    Article  MathSciNet  Google Scholar 

  6. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165(2), 261–274 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Cools, R., Poppe, K.: Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function. BIT 51(2), 275–288 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dencker, P., Erb, W.: A unifying theory for multivariate polynomial interpolation on general Lissajous–Chebyshev nodes. arXiv:1711.00557 [math.NA] (2017)

  9. Dencker, P., Erb, W.: Multivariate polynomial interpolation on Lissajous–Chebyshev nodes. J. Approx. Theory 219, 15–45 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dencker, P., Erb, W., Kolomoitsev, Y., Lomako, T.: Lebesgue constants for polyhedral sets and polynomial interpolation on Lissajous–Chebyshev nodes. J. Complex. 43, 1–27 (2017)

    Article  MathSciNet  Google Scholar 

  11. Duma, V.-F., Schitea, A.: Laser scanners with rotational Risley prisms: exact scan patterns. Proc. Roman. Acad. Ser. A 19, 53–60 (2018)

    MathSciNet  Google Scholar 

  12. Erb, W.: Bivariate Lagrange interpolation at the node points of Lissajous curves—the degenerate case. Appl. Math. Comput. 289, 409–425 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Erb, W.: A spectral interpolation scheme on the unit sphere based on the nodes of spherical Lissajous curves. IMA J. Num. Anal. (2018). https://doi.org/10.1093/imanum/dry090

    Article  MathSciNet  MATH  Google Scholar 

  14. Erb, W., Kaethner, C., Ahlborg, M., Buzug, T.M.: Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves. Numer. Math. 133(1), 685–705 (2016)

    Article  MathSciNet  Google Scholar 

  15. Floater, M.S.: Polynomial interpolation on interlacing rectangular grids. J. Approx. Theory 222, 64–73 (2017)

    Article  MathSciNet  Google Scholar 

  16. Fornberg, B.: A pseudospectral approach for polar and spherical geometries. SIAM J. Sci. Comput. 16, 1071–1081 (1995)

    Article  MathSciNet  Google Scholar 

  17. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  18. Ganesh, M., Graham, I., Sivaloganathan, J.: A new spectral boundary integral collocation method for three-dimensional potential problems. SIAM J. Numer. Anal. 35, 778–804 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gorjanc, S.: Rose surfaces and their visualizations. J. Geom. Graph. 13(1), 1–9 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Grandi, G.: Flores geometrici ex Rhodonearum, et Cloeliarum curvarum descriptione resultantes,... Typis Regiae Celsitudinis, apud Tartinium & Franchium superiorum approbatione, Florence (1728)

  21. Harris, L.A.: Bivariate Lagrange interpolation at the Chebyshev nodes. Proc. Am. Math. Soc. 138(12), 4447–4453 (2010)

    Article  MathSciNet  Google Scholar 

  22. Himstedt, A.: Über diejenigen ebenen Kurven, welche der Polargleichung \(r = a \sin \lambda \varTheta \) entsprechen. Progr. Löbau (1888)

  23. Huang, W., Ma, H., Sun, W.: Convergence analysis of spectral collocation methods for a singular differential equation. SIAM J. Numer. Anal. 41(6), 2333–2349 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kämmerer, L., Kunis, S., Potts, D.: Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28, 76–92 (2012)

    Article  MathSciNet  Google Scholar 

  25. Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complex. 31, 543–576 (2015)

    Article  MathSciNet  Google Scholar 

  26. Knopp, T., Biederer, S., Sattel, T.F., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Trajectory analysis for magnetic particle imaging. Phys. Med. Biol. 54(2), 385–397 (2009)

    Article  Google Scholar 

  27. Knopp, T., Gdaniec, N., Möddel, M.: Magnetic particle imaging: from proof of principle to preclinical applications. Phys. Med. Biol. 62(14), R124 (2017)

    Article  Google Scholar 

  28. Logan, B.F., Shepp, L.A.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)

    Article  MathSciNet  Google Scholar 

  29. Loria, G.: Spezielle algebraische und transcendente ebene Kurven. Theorie und Geschichte. B.G. Teubner Verlag, Leipzig (1902)

    MATH  Google Scholar 

  30. Lu, Y., Zhou, Y., Hei, M., Fan, D.: Frame frequency prediction for Risley-prism-based imaging laser radar. Appl. Opt. 53, 3556–3564 (2014)

    Article  Google Scholar 

  31. Potts, D., Volkmer, T.: Fast and exact reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form. In: Proceedings of the 11th International Conference on Sampling Theory and Applications, pp. 392–396 (2015)

  32. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    Book  Google Scholar 

  33. Szwargulski, P., Kaethner, C., Ahlborg, M., Buzug, T.: A radial Lissajous trajectory for magnetic particle imaging. In: International Workshop on Magnetic Particle Imaging 2015 (2015)

  34. Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  35. Townsend, A., Wilber, H., Wright, G.: Computing with functions in spherical and polar coordinates I. The sphere. SIAM J. Sci. Comput. 38(4), C403–C425 (2016)

    Article  Google Scholar 

  36. Trefethen, L.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  37. Wilber, H., Townsend, A., Wright, G.: Computing with functions in spherical and polar coordinates II. The disk. SIAM J. Sci. Comput. 39(3), C238–C262 (2017)

    Article  Google Scholar 

  38. Xu, Y.: Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory 87(2), 220–238 (1996)

    Article  MathSciNet  Google Scholar 

  39. Xu, Y.: A new approach to the reconstruction of images from Radon projections. Adv. Appl. Math. 36(4), 388–420 (2006)

    Article  MathSciNet  Google Scholar 

  40. Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form der Phasenkontrastmethode. Physica 1, 689–704 (1934)

    Article  Google Scholar 

  41. Zygmund, A.: Trigonometric Series, 3rd edn., Volume I & II combined (Cambridge Mathematical Library). Cambridge University Press, Cambridge (2002)

Download references

Acknowledgements

I want to thank both referees for their valuable feedback and the constructive comments that helped to improve the quality of this manuscript. This research was partially funded by GNCS-IN\(\delta \)AM and by the European Union Horizon 2020 research and innovation programme ERA-PLANET, Grant Agreement No. 689443 (GEOEssential).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Erb.

Additional information

Communicated by Yuan Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erb, W. Rhodonea Curves as Sampling Trajectories for Spectral Interpolation on the Unit Disk. Constr Approx 53, 281–318 (2021). https://doi.org/10.1007/s00365-019-09495-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09495-w

Keywords

Mathematics Subject Classification

Navigation