Skip to main content
Log in

Perturbation analysis of an eigenvector-dependent nonlinear eigenvalue problem with applications

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The eigenvector-dependent nonlinear eigenvalue problem arises in many important applications, such as the discretized Kohn–Sham equation in electronic structure calculations and the trace ratio problem in linear discriminant analysis. In this paper, we perform a perturbation analysis for the eigenvector-dependent nonlinear eigenvalue problem, which gives upper bounds for the distance between the solution to the original nonlinear eigenvalue problem and the solution to the perturbed nonlinear eigenvalue problem. A condition number for the nonlinear eigenvalue problem is introduced, which reveals the factors that affect the sensitivity of the solution. Furthermore, two computable error bounds are given for the nonlinear eigenvalue problem, which can be used to measure the quality of an approximate solution. Numerical results on practical problems, such as the Kohn–Sham equation and the trace ratio optimization, indicate that the proposed upper bounds are sharper than the state-of-the-art bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note that \(2k\le n\). By the CS decomposition [15, Chapter 1, Theorem 5.1], we know that there exist unitary matrices \({{\,\mathrm{diag}\,}}(U_1,U_2)\) and \({{\,\mathrm{diag}\,}}(U_3,U_4)\) with \(U_1,U_3\in \mathbb {C}^{k\times k}\) and \(U_2,U_4\in \mathbb {C}^{(n-k)\times (n-k)}\), such that \([\widetilde{V}_*, \widetilde{V}_c]=[V_*, V_c] {{\,\mathrm{diag}\,}}(U_1, U_2)\begin{bmatrix}\Gamma&-\Sigma&0\\ \Sigma&\Gamma&0 \\ 0&0&I\end{bmatrix}{{\,\mathrm{diag}\,}}(U_3,U_4)^{\mathrm {H}}\), where \(\Sigma \) and \(\Gamma \) are diagonal matrices and \(\Sigma ^2+\Gamma ^2=I_{k}\). Rewrite \([\widetilde{V}_*, \widetilde{V}_c]=[\widetilde{V}_*, \widetilde{V}_c] {{\,\mathrm{diag}\,}}(U_3U_1^{\mathrm {H}}Q_*\widetilde{Q}_*^{\mathrm {H}}, U_4U_2^{\mathrm {H}}Q_c\widetilde{Q}_c^{\mathrm {H}})\), (2.22) still holds. Then (2.23) follows immediately by setting \(Z=Q_c^{\mathrm {H}}U_2\left[ {\begin{matrix}\Sigma \Gamma ^{-1}\\ 0\end{matrix}}\right] U_1^{\mathrm {H}}Q_*\).

References

  1. Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cai, Y., Zhang, L.-H., Bai, Z., Li, R.-C.: On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl. 39, 1360–1382 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for Kohn–Sham models. Multiscale Model. Simul. 12, 1828–1869 (2014)

    Article  MathSciNet  Google Scholar 

  4. Davis, C., Kahan, W .M.: The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7, 1–46 (1970)

    Article  MathSciNet  Google Scholar 

  5. Jarlebring, E., Kvaal, S., Mechiels, W.: An inverse iteration method for eigenvalue problems with eigenvectors nonlinearities. SIAM J. Sci. Comput. 36, A1978–A2001 (2014)

    Article  MathSciNet  Google Scholar 

  6. Jia, S.-H., Xie, H.-H., Xie, M.-T., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016)

    Article  MathSciNet  Google Scholar 

  7. Khamsi, M.A.: Introduction to metric fixed point theory. In: Almezel, S., Ansari, Q.H., Khamsi, M.A. (eds.) Topics in Fixed Point Theory, pp. 1–32. Springer, Cham (2014)

    MATH  Google Scholar 

  8. Lin, W.-W., Sun, J.-G.: Perturbation analysis of the periodic discrete-time algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 24, 411–438 (2002)

    Article  MathSciNet  Google Scholar 

  9. Liu, X., Wang, X., Wen, Z., Yuan, Y.: On the convergence of the self-consistent field iteration in Kohn–Sham density functional theory. SIAM J. Matrix Anal. Appl. 35, 546–558 (2014)

    Article  MathSciNet  Google Scholar 

  10. Liu, X., Wen, Z., Wang, X., Ulbrich, M., Yuan, Y.: On the analysis of the discretized Kohn–Sham density functional theory. SIAM J. Matrix Anal. Appl. 53, 1758–1785 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Ngo, T., Bellalij, M., Saad, Y.: The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl. 31, 2950–2971 (2010)

    Article  MathSciNet  Google Scholar 

  13. Rice, J.: A theory of condition. SIAM. J. Numer. Anal. 3, 287–310 (1966)

    Article  MathSciNet  Google Scholar 

  14. Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3–54 (2010)

    Article  MathSciNet  Google Scholar 

  15. Stewart, G .W., Sun, J g: Matrix Perturbation Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  16. Sun, J.-G.: Perturbation theory for algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 19, 39–65 (1998)

    Article  MathSciNet  Google Scholar 

  17. Sun, J.-G.: Perturbation analysis of the matrix equation \(X= Q+ A^H\, (\widehat{X}- C)^{-1}\) A. Linear Algebra Appl. 372, 33–51 (2003)

    Article  MathSciNet  Google Scholar 

  18. Sun, J.-G., Xu, S.-F.: Perturbation analysis of the maximal solution of the matrix equation \(X+A^{\ast }X^{-1}A=P\). II. Linear Algebra Appl. 362, 211–228 (2003)

    Article  MathSciNet  Google Scholar 

  19. Yang, C., Meza, J.C., Wang, L.-W.: A trust region direct constrained minimization algorithm for the Kohn–Sham equation. SIAM J. Sci. Comput. 29, 1854–1875 (2007)

    Article  MathSciNet  Google Scholar 

  20. Zhang, L.-H., Li, R.-C.: Maximization of the sum of the trace ratio on the Stiefel manifold, I: theory. Sci. China Math. 57, 2495–2508 (2014)

    Article  MathSciNet  Google Scholar 

  21. Zhang, L.-H., Li, R.-C.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: computation. Sci. China Math. 58, 1549–1566 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhang, L.-H., Yang, W.H.: Perturbation analysis for the trace quotient problem. Linear Multilinear Algebra 61, 1629–1640 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their valuable comments and suggestions. We also would like to thank Prof. Ren-Cang Li from the University of Texas at Arlington for helpful comments on a preliminary draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jian Bai.

Additional information

Communicated by Daniel Kressner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC Nos. 11671023, 11671337, 11771188. The research of Zheng-Jian Bai was partially supported by the Fundamental Research Funds for the Central Universities (No. 20720180008). The research of Zhigang Jia is partially supported by the Priority Academic Program Development Project (PAPD) and the Top-notch Academic Programs Project (No. PPZY2015A013) of Jiangsu Higher Education Institutions, and the Natural Science Foundation of the Jiangsu Higher Educations of China (No.18KJA110001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Jia, Z. & Bai, ZJ. Perturbation analysis of an eigenvector-dependent nonlinear eigenvalue problem with applications. Bit Numer Math 60, 1–29 (2020). https://doi.org/10.1007/s10543-019-00765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00765-4

Keywords

Mathematics Subject Classification

Navigation